langchain 快速入门(六):实现多agent协作
简介
多Agent协作能够将一个复杂的任务拆解成一个个子任务给专门的agent,能够解决复杂问题,实现复杂的ai工作流。
多Agent协作
不同的Agent,有不同的能力,我们可能会有各种实际需求,例如:实时识别车牌位置(Yolo)->识别车牌内容(qwen-vl)-> LLM管理记录车牌信息。通过多Agent协作的工作流,能够实现拍照答题,自动剪辑,ppt生成等一系列复杂问题。
下面用一个简单的案例,来说明。
简单的多Agent协作
示例
需求:查一下阿里、腾讯、百度的PE,并计算平均值。
import os
import operator
from pydantic import BaseModel, Field
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, BaseMessage, ToolMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from typing import Annotated, List, Literal, TypedDict
from langgraph.graph import StateGraph, END
os.environ["DASHSCOPE_API_KEY"] = "apikey"
llm = ChatTongyi(model="qwen-plus")
@tool
def web_search(query: str):
"""用于查找最新的股票数据、公司财报信息。"""
results = []
if "阿里" in query: results.append("阿里巴巴(BABA) PE: 15.5")
if "腾讯" in query: results.append("腾讯控股(0700) PE: 18.2")
if "百度" in query: results.append("百度(BIDU) PE: 11.8")
if not results:
return "未找到数据"
return " ; ".join(results)
@tool
def python_calculator(code: str):
"""用于计算。输入必须是 python 代码。"""
try:
result = eval(code)
return f"计算结果: {result}"
except Exception as e:
return f"计算错误: {e}"
def create_agent(state: dict, llm, tools, system_prompt):
llm_tools = llm.bind_tools(tools)
prompt = [SystemMessage(content=system_prompt)] + state["messages"]
response = llm_tools.invoke(prompt)
results = [response]
for tool_call in response.tool_calls:
func_name = tool_call["name"]
args = tool_call["args"]
call_id = tool_call["id"]
func = next((t for t in tools if t.name == func_name), None)
if func:
tool_output = func.invoke(args)
tool_msg = ToolMessage(
content=str(tool_output),
name=func_name,
tool_call_id=call_id
)
results.append(tool_msg)
return {"messages": results}
class State(TypedDict):
messages: Annotated[List[BaseMessage], operator.add]
next: str
def researcher_node(state):
return create_agent(
state=state,
llm=llm,
tools=[web_search],
system_prompt="你是一个研究员。只负责查数据,找到数据后直接输出原话,不需要计算。"
)
def coder_node(state):
return create_agent(
state=state,
llm=llm,
tools=[python_calculator],
system_prompt="你是一个程序员。根据上面研究员查到的数据,写代码计算平均值。"
)
def finish_node(state):
return create_agent(
state=state,
llm=llm,
tools=[],
system_prompt="任务完成,简短的总结最终结果。"
)
def supervisor_node(state):
system_prompt = (
"你是项目经理。根据对话历史决定下一步交给谁。"
"查数据找 Researcher,计算找 Coder,识别图片找 Photographer。"
"如果任务完成,必须选择 FINISH。"
)
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
("system", "根据以上情况,请做出选择。"),
])
class RouteResponse(BaseModel):
next: Literal["Researcher", "Coder", "FINISH"] = Field(
...,
description="下一步交给谁?如果任务完成请选 FINISH"
)
chain = prompt | llm.with_structured_output(RouteResponse)
response = chain.invoke(state)
return {"next": response.next}
def init_agent():
workflow = StateGraph(State)
workflow.add_node("Researcher", researcher_node)
workflow.add_node("Coder", coder_node)
workflow.add_node("Supervisor", supervisor_node)
workflow.add_node("Finish", finish_node)
workflow.add_edge("Researcher", "Supervisor")
workflow.add_edge("Coder", "Supervisor")
workflow.add_edge("Finish", END)
workflow.add_conditional_edges(
"Supervisor",
lambda state: state["next"],{
"Researcher": "Researcher",
"Coder": "Coder",
"FINISH": "Finish",
})
workflow.set_entry_point("Supervisor")
return workflow.compile()
if __name__ == "__main__":
agent = init_agent()
for result in agent.stream({
"messages": [HumanMessage(content="查一下阿里、腾讯、百度的PE,并计算平均值。")]
}):
for key, value in result.items():
if key == "Supervisor":
print("[" + key + "] 去向: " + value["next"])
else:
print("[" + key + "] 回复: " + value['messages'][-1].content)
代码解释
代码一共用到了4个agent:
- agent Researcher,其有一个工具,负责搜索某些内容
- agent coder,其有一个工具,负责进行精确计算
- agent finish,其没有工具,负责总结内容
- agent Supervisor,其没有工具,负责管理上面3个agent,决定任务的去向
上面案例使用的是langgraph组件,这里就不详细讲解了,请看之前文章。
代码流程: 初始化工具库->初始化agent->构建图->运行
初始化工具库
@tool
def web_search(query: str):
"""用于查找最新的股票数据、公司财报信息。"""
results = []
if "阿里" in query: results.append("阿里巴巴(BABA) PE: 15.5")
if "腾讯" in query: results.append("腾讯控股(0700) PE: 18.2")
if "百度" in query: results.append("百度(BIDU) PE: 11.8")
if not results:
return "未找到数据"
return " ; ".join(results)
@tool
def python_calculator(code: str):
"""用于计算。输入必须是 python 代码。"""
try:
result = eval(code)
return f"计算结果: {result}"
except Exception as e:
return f"计算错误: {e}"
这里的web_search使用的是虚假的模拟信息,上面的工具描述不够完整,但是能用,如果用实际案例,请描述完整,工具的描述参考之前文章。
初始化agent
其他3个agent
def create_agent(state: dict, llm, tools, system_prompt):
llm_tools = llm.bind_tools(tools)
prompt = [SystemMessage(content=system_prompt)] + state["messages"]
response = llm_tools.invoke(prompt)
results = [response]
for tool_call in response.tool_calls:
func_name = tool_call["name"]
args = tool_call["args"]
call_id = tool_call["id"]
func = next((t for t in tools if t.name == func_name), None)
if func:
tool_output = func.invoke(args)
tool_msg = ToolMessage(
content=str(tool_output),
name=func_name,
tool_call_id=call_id
)
results.append(tool_msg)
def researcher_node(state):
return create_agent(
state=state,
llm=llm,
tools=[web_search],
system_prompt="你是一个研究员。只负责查数据,找到数据后直接输出原话,不需要计算。"
)
def coder_node(state):
return create_agent(
state=state,
llm=llm,
tools=[python_calculator],
system_prompt="你是一个程序员。根据上面研究员查到的数据,写代码计算平均值。"
)
def finish_node(state):
return create_agent(
state=state,
llm=llm,
tools=[],
system_prompt="任务完成,简短的总结最终结果。"
)
流程相对简单,create_agent细节前面文章已经讲解,这里就不废话了。
管理agent
def supervisor_node(state):
system_prompt = (
"你是项目经理。根据对话历史决定下一步交给谁。"
"查数据找 Researcher,计算找 Coder,识别图片找 Photographer。"
"如果任务完成,必须选择 FINISH。"
)
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
("system", "根据以上情况,请做出选择。"),
])
class RouteResponse(BaseModel):
next: Literal["Researcher", "Coder", "FINISH"] = Field(
...,
description="下一步交给谁?如果任务完成请选 FINISH"
)
chain = prompt | llm.with_structured_output(RouteResponse)
response = chain.invoke(state)
return {"next": response.next}
这一步需要简单说明:
class RouteResponse(BaseModel):
next: Literal["Researcher", "Coder", "FINISH"] = Field(
...,
description="下一步交给谁?如果任务完成请选 FINISH"
)
chain = prompt | llm.with_structured_output(RouteResponse)
- LLM中的
with_structured_output方法是langchain提供的一个组件,功能是,限定LLM的输出格式,返回相应格式的字典。 - 定义输出格式限定的类:
- 该类是
BaseModel的子类 Literal是选择,要求ai从"Researcher", "Coder", "FINISH"三选一Field描述变量,尽量详尽,描述+例子,因为是给大模型看的
class classname(BaseModel):
fieldname: fieldtype = Field(..., description="描述")
构建图(重要)
def init_agent():
workflow = StateGraph(State)
workflow.add_node("Researcher", researcher_node)
workflow.add_node("Coder", coder_node)
workflow.add_node("Supervisor", supervisor_node)
workflow.add_node("Finish", finish_node)
workflow.add_edge("Researcher", "Supervisor")
workflow.add_edge("Coder", "Supervisor")
workflow.add_edge("Finish", END)
workflow.add_conditional_edges(
"Supervisor",
lambda state: state["next"],{
"Researcher": "Researcher",
"Coder": "Coder",
"FINISH": "Finish",
})
workflow.set_entry_point("Supervisor")
return workflow.compile()
这一步相当于连接工作流,构建的流程图如下:
+---------------------------+
| 开始 |
+-------------+-------------+
|
v
+---------------------------+
| Supervisor |<----------------+
| (通过当前任务状态,返回next) | |
+-------------+-------------+ |
|(根据state中next判断去向) |
_____________|_____________ |
/ | \ |
/ | \ |
v v v |
+------------+ +------------+ +------------+ |
| Researcher | | Coder | | Finish | |
| (Agent) | | (Agent) | | (Cleanup) | |
+-----+------+ +-----+------+ +-----+------+ |
| | | |
| | v |
| | +------------+ |
+---------------+ | END | |
| +------------+ |
| |
+--------------------------------------+
(返回重新选择下一个agent)
如果❤喜欢❤本系列教程,就点个关注吧,后续不定期更新~

浙公网安备 33010602011771号