langchain 快速入门(六):实现多agent协作

简介

多Agent协作能够将一个复杂的任务拆解成一个个子任务给专门的agent,能够解决复杂问题,实现复杂的ai工作流。

多Agent协作

不同的Agent,有不同的能力,我们可能会有各种实际需求,例如:实时识别车牌位置(Yolo)->识别车牌内容(qwen-vl)-> LLM管理记录车牌信息。通过多Agent协作的工作流,能够实现拍照答题,自动剪辑,ppt生成等一系列复杂问题。

下面用一个简单的案例,来说明。

简单的多Agent协作

示例

需求:查一下阿里、腾讯、百度的PE,并计算平均值。

import os
import operator
from pydantic import BaseModel, Field
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, BaseMessage, ToolMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from typing import Annotated, List, Literal, TypedDict
from langgraph.graph import StateGraph, END

os.environ["DASHSCOPE_API_KEY"] = "apikey"
llm = ChatTongyi(model="qwen-plus")

@tool
def web_search(query: str):
    """用于查找最新的股票数据、公司财报信息。"""
    results = []
    if "阿里" in query: results.append("阿里巴巴(BABA) PE: 15.5")
    if "腾讯" in query: results.append("腾讯控股(0700) PE: 18.2")
    if "百度" in query: results.append("百度(BIDU) PE: 11.8")
    
    if not results:
        return "未找到数据"
    return " ; ".join(results)

@tool
def python_calculator(code: str):
    """用于计算。输入必须是 python 代码。"""
    try:
        result = eval(code)
        return f"计算结果: {result}"
    except Exception as e:
        return f"计算错误: {e}"

def create_agent(state: dict, llm, tools, system_prompt):
    llm_tools = llm.bind_tools(tools)
    
    prompt = [SystemMessage(content=system_prompt)] + state["messages"]
    response = llm_tools.invoke(prompt)

    results = [response]

    for tool_call in response.tool_calls:
        func_name = tool_call["name"]
        args = tool_call["args"]
        call_id = tool_call["id"]
        
        func = next((t for t in tools if t.name == func_name), None)

        if func:
            tool_output = func.invoke(args)
            tool_msg = ToolMessage(
                content=str(tool_output),
                name=func_name,
                tool_call_id=call_id
            )
            results.append(tool_msg)

    return {"messages": results}

class State(TypedDict):
    messages: Annotated[List[BaseMessage], operator.add]
    next: str

def researcher_node(state):
    return create_agent(
        state=state,
        llm=llm,
        tools=[web_search],
        system_prompt="你是一个研究员。只负责查数据,找到数据后直接输出原话,不需要计算。"
    )

def coder_node(state):
    return create_agent(
        state=state,
        llm=llm,
        tools=[python_calculator],
        system_prompt="你是一个程序员。根据上面研究员查到的数据,写代码计算平均值。"
    )

def finish_node(state):
    return create_agent(
        state=state,
        llm=llm,
        tools=[],
        system_prompt="任务完成,简短的总结最终结果。"
    )

def supervisor_node(state):
    system_prompt = (
        "你是项目经理。根据对话历史决定下一步交给谁。"
        "查数据找 Researcher,计算找 Coder,识别图片找 Photographer。"
        "如果任务完成,必须选择 FINISH。"
    )

    prompt = ChatPromptTemplate.from_messages([
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        ("system", "根据以上情况,请做出选择。"),
    ])

    class RouteResponse(BaseModel):
        next: Literal["Researcher", "Coder", "FINISH"] = Field(
            ..., 
            description="下一步交给谁?如果任务完成请选 FINISH"
        )

    chain = prompt | llm.with_structured_output(RouteResponse)

    response = chain.invoke(state)

    return {"next": response.next}

def init_agent():
    workflow = StateGraph(State)
    workflow.add_node("Researcher", researcher_node)
    workflow.add_node("Coder", coder_node)
    workflow.add_node("Supervisor", supervisor_node)
    workflow.add_node("Finish", finish_node)

    workflow.add_edge("Researcher", "Supervisor")
    workflow.add_edge("Coder", "Supervisor")
    workflow.add_edge("Finish", END)
    workflow.add_conditional_edges(
        "Supervisor",
        lambda state: state["next"],{
        "Researcher": "Researcher",
        "Coder": "Coder",
        "FINISH": "Finish",
    })

    workflow.set_entry_point("Supervisor")

    return workflow.compile()

if __name__ == "__main__":
    agent = init_agent()
    for result in agent.stream({
        "messages": [HumanMessage(content="查一下阿里、腾讯、百度的PE,并计算平均值。")]
        }):
        for key, value in result.items():
            if key == "Supervisor":
                print("[" + key + "] 去向: " + value["next"])
            else:
                print("[" + key + "] 回复: " + value['messages'][-1].content)

代码解释

代码一共用到了4个agent:

  1. agent Researcher,其有一个工具,负责搜索某些内容
  2. agent coder,其有一个工具,负责进行精确计算
  3. agent finish,其没有工具,负责总结内容
  4. agent Supervisor,其没有工具,负责管理上面3个agent,决定任务的去向
    上面案例使用的是langgraph组件,这里就不详细讲解了,请看之前文章。

代码流程: 初始化工具库->初始化agent->构建图->运行

初始化工具库

@tool
def web_search(query: str):
    """用于查找最新的股票数据、公司财报信息。"""
    results = []
    if "阿里" in query: results.append("阿里巴巴(BABA) PE: 15.5")
    if "腾讯" in query: results.append("腾讯控股(0700) PE: 18.2")
    if "百度" in query: results.append("百度(BIDU) PE: 11.8")
    
    if not results:
        return "未找到数据"
    return " ; ".join(results)

@tool
def python_calculator(code: str):
    """用于计算。输入必须是 python 代码。"""
    try:
        result = eval(code)
        return f"计算结果: {result}"
    except Exception as e:
        return f"计算错误: {e}"

这里的web_search使用的是虚假的模拟信息,上面的工具描述不够完整,但是能用,如果用实际案例,请描述完整,工具的描述参考之前文章。

初始化agent

其他3个agent
def create_agent(state: dict, llm, tools, system_prompt):
    llm_tools = llm.bind_tools(tools)
    
    prompt = [SystemMessage(content=system_prompt)] + state["messages"]
    response = llm_tools.invoke(prompt)

    results = [response]

    for tool_call in response.tool_calls:
        func_name = tool_call["name"]
        args = tool_call["args"]
        call_id = tool_call["id"]
        
        func = next((t for t in tools if t.name == func_name), None)

        if func:
            tool_output = func.invoke(args)
            tool_msg = ToolMessage(
                content=str(tool_output),
                name=func_name,
                tool_call_id=call_id
            )
            results.append(tool_msg)

def researcher_node(state):
    return create_agent(
        state=state,
        llm=llm,
        tools=[web_search],
        system_prompt="你是一个研究员。只负责查数据,找到数据后直接输出原话,不需要计算。"
    )

def coder_node(state):
    return create_agent(
        state=state,
        llm=llm,
        tools=[python_calculator],
        system_prompt="你是一个程序员。根据上面研究员查到的数据,写代码计算平均值。"
    )

def finish_node(state):
    return create_agent(
        state=state,
        llm=llm,
        tools=[],
        system_prompt="任务完成,简短的总结最终结果。"
    )

流程相对简单,create_agent细节前面文章已经讲解,这里就不废话了。

管理agent
def supervisor_node(state):
    system_prompt = (
        "你是项目经理。根据对话历史决定下一步交给谁。"
        "查数据找 Researcher,计算找 Coder,识别图片找 Photographer。"
        "如果任务完成,必须选择 FINISH。"
    )

    prompt = ChatPromptTemplate.from_messages([
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        ("system", "根据以上情况,请做出选择。"),
    ])

    class RouteResponse(BaseModel):
        next: Literal["Researcher", "Coder", "FINISH"] = Field(
            ..., 
            description="下一步交给谁?如果任务完成请选 FINISH"
        )

    chain = prompt | llm.with_structured_output(RouteResponse)

    response = chain.invoke(state)

    return {"next": response.next}

这一步需要简单说明:

class RouteResponse(BaseModel):
    next: Literal["Researcher", "Coder", "FINISH"] = Field(
        ..., 
        description="下一步交给谁?如果任务完成请选 FINISH"
    )
chain = prompt | llm.with_structured_output(RouteResponse)
  • LLM中的with_structured_output方法是langchain提供的一个组件,功能是,限定LLM的输出格式,返回相应格式的字典。
  • 定义输出格式限定的类:
  1. 该类是BaseModel的子类
  2. Literal是选择,要求ai从"Researcher", "Coder", "FINISH"三选一
  3. Field描述变量,尽量详尽,描述+例子,因为是给大模型看的
class classname(BaseModel):
	fieldname: fieldtype = Field(..., description="描述")

构建图(重要)

def init_agent():
    workflow = StateGraph(State)
    workflow.add_node("Researcher", researcher_node)
    workflow.add_node("Coder", coder_node)
    workflow.add_node("Supervisor", supervisor_node)
    workflow.add_node("Finish", finish_node)

    workflow.add_edge("Researcher", "Supervisor")
    workflow.add_edge("Coder", "Supervisor")
    workflow.add_edge("Finish", END)
    workflow.add_conditional_edges(
        "Supervisor",
        lambda state: state["next"],{
        "Researcher": "Researcher",
        "Coder": "Coder",
        "FINISH": "Finish",
    })

    workflow.set_entry_point("Supervisor")

    return workflow.compile()

这一步相当于连接工作流,构建的流程图如下:

       +---------------------------+
       |           开始             |
       +-------------+-------------+
                     |
                     v
       +---------------------------+
       |       Supervisor          |<----------------+
       | (通过当前任务状态,返回next) |                 |
       +-------------+-------------+                 |
                     |(根据state中next判断去向)        |
        _____________|_____________                  |
       /             |             \                 |
      /              |              \                |
     v               v               v               |
+------------+  +------------+  +------------+       |
| Researcher |  |   Coder    |  |   Finish   |       |
|  (Agent)   |  |  (Agent)   |  | (Cleanup)  |       |
+-----+------+  +-----+------+  +-----+------+       |
      |               |               |              |
      |               |               v              |
      |               |         +------------+       |
      +---------------+         |    END     |       |
              |                 +------------+       |
              |                                      |
              +--------------------------------------+
                    (返回重新选择下一个agent)

如果❤喜欢❤本系列教程,就点个关注吧,后续不定期更新~

posted @ 2026-01-27 14:27  ClownLMe  阅读(35)  评论(0)    收藏  举报