无题

文章特殊符号:

\(<\) $<$

\(\leq\) $\leq$

\(\ge\) $\ge$

\(=\) $=$

\(\ne\) $\ne$

\(\lfloor {a + b}\rfloor\) $\lfloor {a + b}\rfloor$

\(\lceil {a+b}\rceil\) $\lceil {a+b}\rceil$

\(+\) $+$

\(-\) $-$

\(\pm\) $\pm$

\(\times\) $\times$

\(\div\) $\div$

\(1\cdot2\) $1\cdot2$

\(\gcd\) $\gcd$

\(\max\) $\max$

\(\min\) $\min$

\(\log\) $\log$

\(\det\) $\det$

\(\wedge\) $\wedge$

\(\vee\) $\vee$

\(\operatorname{lcm}\) $\operatorname{lcm}$

\(\sum\) $\sum$

\(\prod\) $\prod$

\(\bigcup\) $\bigcup$

\(\bigcap\) $\bigcap$

\(\equiv\) $\equiv$

\(\in\) $\in$

\(\ni\) $\ni$

\(\notin\) $\notin$

\(\notni\) $\notni$

\(\subseteq\) $\subseteq$

\(\bmod\) $\bmod$

\(\sqrt{a}\) $\sqrt{a}$

\(\frac{1}{2}\) $\frac{1}{2}$

\(\overline{a}\) $\overline{a}$

\(\{a\}\) $\{a\}$

\(\gets\) $\gets$

\(\leftarrow\) $\leftarrow$

\(\to\) $\to$

\(\rightarrow\) $\rightarrow$

\(\Leftarrow\) $\Leftarrow$

\(\Rightarrow\) $\Rightarrow$

\(\oplus\) $\oplus$

\(\infty\) $\infty$

\(\exists\) $\exists$

\(\nexists\) $\nexists$

\(\forall\) $\forall$

\(\varnothing\) $\varnothing$

\(\imath\) $\imath$

\(\varphi\) $\varphi$

\(\Delta\) $\Delta$

\(\nabla\) $\nabla$

\(\operatorname{xor}\) $\operatorname{xor}$

\(\operatorname{and}\) $\operatorname{and}$

\(\operatorname{or}\) $\operatorname{or}$

\(\ldots\) $\ldots$

\(\cdots\) $\cdots$

\(\dots\) $\dots$

\(\vdots\) $\vdots$

\(\ddots\) $\ddots$

\(\sim\) $\sim$

\(\underset{i_1\leq i_2\leq i_3}{max}\) $\underset{i_1\leq i_2\leq i_3}{max}$

\(\dbinom{N}{K}\) $\dbinom{N}{K}$

\(C_{n}^{n-k}\) $C_{n}^{n-k}$

\(\begin{aligned} \sum_{i=1}^n\end{aligned}\) $\begin{aligned} \sum_{i=1}^n\end{aligned}$

\(\displaystyle\sum_{i=1}^{n}\) $\displaystyle\sum_{i=1}^{n}$

\(\begin{aligned}4&=1+3\\&=2+2\end{aligned}\) $\begin{aligned} 4 &= 1+3 \\&= 2+2 \end{aligned}$

\(\because\) $\because$

\(\therefore\) $\therefore$

\(\dag\) $\dag$

\(\mathcal{O}(n)\) $\mathcal{O}(n)$

\(\mathscr{Code}\) $\mathscr{Code}$

更厉害的

posted @ 2025-06-06 18:01  酱云兔  阅读(45)  评论(0)    收藏  举报