8&9.聚合运算&索引
    
            
摘要:import numpy as np L = np.random.random(100) L array([0.14707817, 0.51538313, 0.50141282, 0.63780797, 0.51842999, 0.89482605, 0.24431981, 0.43637874, 
        
阅读全文
 
            
                posted @ 
2022-04-03 21:00 
饮冰未
        
阅读(264) 
         
        推荐(0)     
             
         
            
            
    7.numpy.array中的计算
    
            
摘要:numpy.array中的计算 给定一个向量,让向量中的 数乘以2 a = (0, 1, 2), a * 2 = (0, 2 ,4) n = 10 L = [i for i in range(n)] L [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # 直接用L*2得到的结果是两个L
        
阅读全文
 
            
                posted @ 
2022-04-03 11:04 
饮冰未
        
阅读(128) 
         
        推荐(0)     
             
         
            
            
    5-9.scikit-learn中的线性回归问题
    
            
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets boston_data = datasets.load_boston() X = boston_data.data y = boston_d
        
阅读全文
 
            
                posted @ 
2022-04-03 10:41 
饮冰未
        
阅读(54) 
         
        推荐(0)     
             
         
            
            
    18.网格搜索
    
            
摘要:import numpy as np from sklearn import datasets digits = datasets.load_digits() X = digits.data y = digits.target from sklearn.model_selection import 
        
阅读全文
 
            
                posted @ 
2022-04-03 10:40 
饮冰未
        
阅读(156) 
         
        推荐(0)     
             
         
            
            
    5-8.实现多元线性回归
    
            
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets boston_data = datasets.load_boston() X = boston_data.data y = boston_d
        
阅读全文
 
            
                posted @ 
2022-04-03 10:24 
饮冰未
        
阅读(85) 
         
        推荐(0)     
             
         
            
            
    5-5衡量回归算法的标准
    
            
摘要:衡量回归算法的标准 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets 波士顿房产数据 boston_market = datasets.load_boston() print(boston_
        
阅读全文
 
            
                posted @ 
2022-04-02 19:58 
饮冰未
        
阅读(72) 
         
        推荐(0)     
             
         
            
            
    5-3.简单的线性回归
    
            
摘要:import numpy as np import matplotlib.pyplot as plt x = np.array([1., 2., 3., 4., 5.]) y = np.array([1., 3., 2., 3., 5.]) plt.scatter(x, y) plt.axis([0
        
阅读全文
 
            
                posted @ 
2022-04-02 19:42 
饮冰未
        
阅读(66) 
         
        推荐(0)     
             
         
            
            
    5&6.numpy数组的基本操作
    
            
摘要:import numpy as np x = np.arange(10) x array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) X = np.arange(15).reshape(3, 5) X array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 
        
阅读全文
 
            
                posted @ 
2022-04-01 22:44 
饮冰未
        
阅读(272) 
         
        推荐(0)     
             
         
            
            
    3&4.numpy.array基础,创建numpy数组和矩阵
    
            
摘要:3.numpy.array基础 导入numpy import numpy numpy.__version__ '1.16.5' 也可以将numpy这个包命名 import numpy as np np.__version__ '1.16.5' python 中 list 的的特点 格式自由 list
        
阅读全文
 
            
                posted @ 
2022-03-31 21:42 
饮冰未
        
阅读(135) 
         
        推荐(0)     
             
         
            
            
    2.Jupyter Notebook 高级命令
    
            
摘要:2.Jupyter Notebook 高级命令 %run 命令 %run myscripts/printhello.py MachineLearning 同时也把printhello这个函数也加载了进来 printhello('MachineLearning') Hello MachineLearn
        
阅读全文
 
            
                posted @ 
2022-03-31 21:11 
饮冰未
        
阅读(149) 
         
        推荐(0)     
             
         
            
            
    1.Jupyter Notebook初级命令
    
            
摘要:1.Jupyter Notebook初级命令 1 + 2 3 for i in range(3): print('hello world') hello world hello world hello world 5 + 8 * 2 21 5 + 6 11 运行当前单元格 Ctrl + Enter 
        
阅读全文
 
            
                posted @ 
2022-03-31 21:00 
饮冰未
        
阅读(96) 
         
        推荐(0)