AVX-512支持:SIMD的终极形态
// 优化的数值计算
// 优化前的代码
public double[] ProcessData(double[] input)
{
var result = new double[input.Length];
for (int i = 0; i < input.Length; i++)
{
result[i] = Math.Sin(input[i]) * Math.Cos(input[i]);
}
return result;
}
// 优化后的代码:使用硬件内在函数
public unsafe double[] ProcessDataOptimized(double[] input)
{
var result = new double[input.Length];
fixed (double* pInput = input, pResult = result)
{
int i = 0;
if (Avx512F.IsSupported)
{
var size = Vector512<double>.Count;
for (; i <= input.Length - size; i += size)
{
var vec = Avx512F.LoadVector512(pInput + i);
var sinVec = Avx512F.Sin(vec);
var cosVec = Avx512F.Cos(vec);
var product = Avx512F.Multiply(sinVec, cosVec);
Avx512F.Store(pResult + i, product);
}
}
// 处理剩余元素
for (; i < input.Length; i++)
{
pResult[i] = Math.Sin(pInput[i]) * Math.Cos(pInput[i]);
}
}
return result;
}
//使用AVX-512进行高性能矩阵运算
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
public unsafe void MatrixMultiply(float* left, float* right, float* result, int size)
{
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size; j += 16) // 一次处理16个单精度浮点数
{
// 加载16个float到AVX-512寄存器
var vecLeft = Avx512F.LoadVector512(left + i * size + j);
var vecRight = Avx512F.LoadVector512(right + j * size);
// 执行向量乘法
var product = Avx512F.Multiply(vecLeft, vecRight);
// 存储结果
Avx512F.Store(result + i * size + j, product);
}
}
}
public void OptimizedMethod()
{
if (Avx512F.IsSupported)
{
// 使用AVX-512优化
ProcessWithAvx512();
}
else if (Avx2.IsSupported)
{
// 使用AVX2优化
ProcessWithAvx2();
}
else if (Sse42.IsSupported)
{
// 使用SSE4.2优化
ProcessWithSse42();
}
else
{
// 回退到标量实现
ProcessScalar();
}
}