实验2:Open vSwitch虚拟交换机实践

一、实验目的

1.能够对Open vSwitch进行基本操作;
2.能够通过命令行终端使用OVS命令操作Open vSwitch交换机,管理流表;
3.能够通过Mininet的Python代码运行OVS命令,控制网络拓扑中的Open vSwitch交换机

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

1.ovs-vsctl基础操作实践:创建OVS交换机,以ovs-xxxxxxxxx命名,其中xxxxxxxxx为本人学号。在创建的交换机上增加端口p0和p1,设置p0的端口号为100,p1的端口号为101,类型均为internal;为了避免网络接口上的地址和本机已有网络地址冲突,需要创建虚拟网络空间(参考命令netns)ns0和ns1,分别将p0和p1移入,并分别配置p0和p1端口的ip地址为190.168.1.100、192.168.1.101,子网掩码为255.255.255.0;最后测试p0和p1的连通性。
测试ping


输入sudo ovs-vsctl show查看网络状态

2.使用Mininet搭建的SDN拓扑,如下图所示,要求支持OpenFlow 1.3协议,主机名、交换机名以及端口对应正确。
python代码如下:
``#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

net = Mininet( topo=None,
               build=False,
               ipBase='10.0.0.0/8')

info( '*** Adding controller\n' )
c0=net.addController(name='c0',
                  controller=Controller,
                  protocol='tcp',
                  port=6633)

info( '*** Add switches\n')
s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

info( '*** Add hosts\n')
h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None)
h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None)
h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None)
h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None)

info( '*** Add links\n')
net.addLink(h1, s1, 1, 1)
net.addLink(h2, s1, 1, 2)
net.addLink(h3, s2, 1, 1)
net.addLink(h4, s2, 1, 2)
net.addLink(s1, s2, 3, 3)

info( '*** Starting network\n')
net.build()
info( '*** Starting controllers\n')
for controller in net.controllers:
    controller.start()

info( '*** Starting switches\n')
net.get('s1').start([c0])
net.get('s2').start([c0])

info( '*** Post configure switches and hosts\n')

CLI(net)
net.stop()

if name == 'main':
setLogLevel( 'info' )
myNetwork()
代码运行结果

3.通过命令行终端输入“ovs-ofctl”命令,直接在s1和s2上添加流表,划分出所要求的VLAN。
查看流表如图

4.主机连通性如图

wireshark抓包截图如下:
h1-h3

h2-h4

(二)进阶要求

阅读SDNLAB实验使用Mininet,编写Python代码,生成(一)中的SDN拓扑,并在代码中直接使用OVS命令,做到可以直接运行Python程序完成和(一)相同的VLAN划分。
python代码如下
`#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

net = Mininet( topo=None,
               build=False,
               ipBase='10.0.0.0/8')

info( '*** Adding controller\n' )
c0=net.addController(name='c0',
                  controller=Controller,
                  protocol='tcp',
                  port=6633)

info( '*** Add switches\n')
s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

info( '*** Add hosts\n')
h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None)
h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None)
h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None)
h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None)

info( '*** Add links\n')
net.addLink(h1, s1,1,1)
net.addLink(h2, s1,1,2)
net.addLink(s1, s2,3,3)
net.addLink(s2, h3,1,1)
net.addLink(s2, h4,2,1)

info( '*** Starting network\n')
net.build()
info( '*** Starting controllers\n')
for controller in net.controllers:
    controller.start()

info( '*** Starting switches\n')
net.get('s1').start([c0])
net.get('s2').start([c0])

s1.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,in_port=1,actions=push_vlan:0x8100,set_field:4096-\>vlan_vid,output:3')
s1.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,in_port=2,actions=push_vlan:0x8100,set_field:4097-\>vlan_vid,output:3')
s1.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,dl_vlan=0,actions=pop_vlan,output:1')
s1.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s1 priority=1,dl_vlan=1,actions=pop_vlan,output:2')

s2.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s2 priority=1,in_port=1,actions=push_vlan:0x8100,set_field:4096-\>vlan_vid,output:3')
s2.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s2 priority=1,in_port=2,actions=push_vlan:0x8100,set_field:4097-\>vlan_vid,output:3')
s2.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s2 priority=1,dl_vlan=0,actions=pop_vlan,output:1')
s2.cmd('sudo ovs-ofctl -O OpenFlow13 add-flow s2 priority=1,dl_vlan=1,actions=pop_vlan,output:2')

info( '*** Post configure switches and hosts\n')

CLI(net)
net.stop()

if name == 'main':
setLogLevel( 'info' )
myNetwork()
`
代码运行结果

wireshark抓包截图如下
h1-h3

h2-h4

四、实验总结

个人认为除去进阶要求,本次实验难度简单,包括进阶要求,本次实验难度则为中等。在本次实验中,我参照实验指导示例PDF,较为顺利地做完了进阶要求之前的内容,遇到的唯一的麻烦是在终端输入指令时,由于指令较长,有一定的复杂性,因此,要在敲下回车键之前仔细审核自己的指令是否存在输入错误,单独执行sudo ovs-vsctl add-port ovs-032002107 p0指令时会报错,执行后续命令后错误消失,对其原因不是很理解。
进阶要求中,实际上是在python代码中实现了命令行的输入执行,将vlan划分写入代码中一并执行,只需运行一个代码就能够完成SDN拓扑的生成和vlan的划分,我在参照网络上的一些类似代码之后终于通过修改实验(一)2的代码,实现了这一功能,经验证,结果与预期相符合。本次实验圆满成功。

posted @ 2022-09-25 22:19  Chandicx  阅读(84)  评论(0)    收藏  举报