Description
Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of the necklace can be produced. You should know that the necklace might not use up all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected. 
You only need to output the answer module a given number P.
Input
The first line of the input is an integer X (X <= 3500) representing the number of test cases. The following X lines each contains two numbers N and P (1 <= N <= 1000000000, 1 <= P <= 30000), representing a test case.
Output
For each test case, output one line containing the answer.
Sample Input
5 
1 30000 
2 30000 
3 30000 
4 30000 
5 30000
Sample Output
1 
3 
11 
70 
629
Source
POJ Monthly,Lou Tiancheng
思路
首先利用polya求出答案为: 
代码
#include <cstdio>
inline int phi(int n)
{
  int res=n;
  for(register int i=2; i*i<=n; ++i)
    {
      if(!(n%i))
        {
          res=(res/i)*(i-1);
          while(!(n%i))
            {
              n/=i;
            }
        }
    }
  if(n!=1)
    {
      res=(res/n)*(n-1);
    }
  return res;
}
inline int quickpow(int a,int b,int p)
{
  int res=1;
  while(b)
    {
      if(b&1)
        {
          res=1ll*res*a%p;
        }
      a=1ll*a*a%p;
      b>>=1;
    }
  return res;
}
int t,n,p;
int main()
{
  scanf("%d",&t);
  while(t--)
    {
      int ans=0;
      scanf("%d%d",&n,&p);
      for(register int i=1; i*i<=n; ++i)
        {
          if(!(n%i))
            {
              ans+=1ll*phi(n/i)*quickpow(n,i-1,p)%p;
              if(i*i!=n)
                {
                  ans+=1ll*phi(i)*quickpow(n,n/i-1,p)%p;
                }
              ans%=p;
            }
        }
      printf("%d\n",ans);
    }
  return 0;
}
 
                    
                 
 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号