面试题 01.07. 旋转矩阵

面试题 01.07. 旋转矩阵

给你一幅由 N × N 矩阵表示的图像,其中每个像素的大小为 4 字节。请你设计一种算法,将图像旋转 90 度。

不占用额外内存空间能否做到?

示例 1:

给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],

原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:

给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],

原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]

  1. 使用辅助数组(一般不建议使用辅助数组)
class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        int[][] matrix_new = new int[n][n];
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                matrix_new[j][n - i - 1] = matrix[i][j];
            }
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                matrix[i][j] = matrix_new[i][j];
            }
        }
    }
}

  1. 原地旋转
public void rotate_02(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n / 2; ++i) {
            for (int j = 0; j < (n + 1) / 2; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - j - 1][i];
                matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
                matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
                matrix[j][n - i - 1] = temp;
            }
        }
    }
  1. 用翻转代替旋转
 /**
     * 翻转代替旋转
     * @param matrix
     */
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        // 水平翻转
        for (int i = 0; i < n / 2; ++i) {
            for (int j = 0; j < n; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - i - 1][j];
                matrix[n - i - 1][j] = temp;
            }
        }
        // 主对角线翻转
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
    }

  1. 转框

先转最外框、再转最内框

在这里插入图片描述


public class RotateMatrix {

	public static void rotate(int[][] matrix) {
		int tR = 0;
		int tC = 0;
		int dR = matrix.length - 1;
		int dC = matrix[0].length - 1;
		while (tR < dR) {
			rotateEdge(matrix, tR++, tC++, dR--, dC--);
		}
	}
	//	int tR 左上角点的行, int tC 左上角点的列, int dR 右下角点的行, int dC 右下角点的列(正方形)
	public static void rotateEdge(int[][] m, int tR, int tC, int dR, int dC) {
		int times = dC - tC; //如果有三个数,就两个出发点 0 1 2
		int tmp = 0;
		for (int i = 0; i != times; i++) {	//依次枚举 
			tmp = m[tR][tC + i];	//原始出发点,把四个点的下标找到进行交换位置
			m[tR][tC + i] = m[dR - i][tC];	
			m[dR - i][tC] = m[dR][dC - i];
			m[dR][dC - i] = m[tR + i][dC];
			m[tR + i][dC] = tmp;
		}
	}

	public static void printMatrix(int[][] matrix) {
		for (int i = 0; i != matrix.length; i++) {
			for (int j = 0; j != matrix[0].length; j++) {
				System.out.print(matrix[i][j] + " ");
			}
			System.out.println();
		}
	}

	public static void main(String[] args) {
		int[][] matrix = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 },
				{ 13, 14, 15, 16 } };
		printMatrix(matrix);
		rotate(matrix);
		System.out.println("=========");
		printMatrix(matrix);

	}

}

posted @ 2021-01-02 21:26  your_棒棒糖  阅读(45)  评论(0)    收藏  举报