理解最小路径覆盖(转)

  有向无环图的最小路径覆盖是指找最小数目的互相不相交的有向路径,满足所有顶点都被覆盖.

  首先给出公式:DAG的最小路径覆盖数=DAG图中的节点数-相应二分图中的最大匹配数.

  那么对应一个DAG,如何构造相应的二分图?对于DAG中的一个顶点p,二分图中有两个顶点pp',对应DAG中的一条有向边p->q,二分图中有p-q'的一条无向边.二分图中p属于S集合,p'属于T集合.

  下面我们来解释上面公式为什么成立,思路参考baihacker神牛:



  上图中,对应左边的DAG建立构造右边的二分图,可以找到二分图的一个最大匹配M:1-3',3-4',那么M中的这两条匹配边怎样对应DAG中的路径的边?

  使二分图中一条边对应DAG中的一条有向边,1-3'对应DAG图中的有向边1->3,这样DAG1就会有一个后继顶点(3会是1的唯一后继,因为二分图中一个顶点至多关联一条边!),所以1不会成为DAG中一条路径中的结尾顶点,同样,3-4'对应DAG3->4,3也不会成为结尾顶点,那么原图中总共4个顶点,减去2个有后继的顶点,就剩下没有后继的顶点,DAG路径的结尾顶点,而每个结尾顶点正好对应DAG中的一条路径,二分图中寻找最大匹配M,就是找到了对应DAG中的非路径结尾顶点的最大数目,那么DAG中顶点数-|M|就是DAG中结尾顶点的最小数目,DAG的最小路径覆盖数.

 

posted @ 2016-04-10 12:23  CXCXCXC  阅读(230)  评论(0编辑  收藏  举报