TLD
PN-learning:Bootstrapping Binary Classifiers by Structural Constraints, Zdenek Kalal,CVPR2010
PN学习可以定义为一下的过程:
(1)准备一个数量较少的训练样本集合和一个数量很大的测试样本集合。
(2)利用训练样本训练一个初始分类器。同时,利用训练样本对(先验)约束条件进行相应的调整。
(3)利用分类器对测试样本赋予标签,并找出分类器赋予的标签同约束条件相矛盾的那些样本;
(4)将上述相矛盾的样本重新赋予标签,将其加入训练样本,重新训练分类器;
反复迭代上述过程,直到满足某个约束条件
Exploiting unlabeled data
Expectation-Maximization (EM) is an algorithm for finding parameters of probabilistic models.EM is sometimes interpreted as a “soft” version of self-learning.
Self-learning is probably the oldest approach for semisupervised learning.
WE WERE BOTH YOUNG WHEN I FIRST SAW YOU
浙公网安备 33010602011771号