TLD

PN-learning:Bootstrapping Binary Classifiers by Structural Constraints, Zdenek Kalal,CVPR2010

PN学习可以定义为一下的过程: 

(1)准备一个数量较少的训练样本集合和一个数量很大的测试样本集合。 

(2)利用训练样本训练一个初始分类器。同时,利用训练样本对(先验)约束条件进行相应的调整。 

(3)利用分类器对测试样本赋予标签,并找出分类器赋予的标签同约束条件相矛盾的那些样本; 

(4)将上述相矛盾的样本重新赋予标签,将其加入训练样本,重新训练分类器; 

反复迭代上述过程,直到满足某个约束条件

Exploiting unlabeled data

Expectation-Maximization (EM) is an algorithm for finding parameters of probabilistic models.EM is sometimes interpreted as a “soft” version of self-learning.

Self-learning is probably the oldest approach for semisupervised learning.

 

posted on 2013-12-07 11:58  Aliceye  阅读(388)  评论(0)    收藏  举报

导航