2025.9.6 闲话

\[\sum_{i=0}^n\dbinom ni(-1)^i\dfrac1{m+i+1} \]


5k 问能不能一等到底:

\[\begin{aligned}\sum_{i=0}^n\dbinom ni(-1)^i\dfrac1{m+i+1}&=\sum_{i=0}^n\dbinom ni(-1)^i\int_0^1(1-x)^{m+i}\mathrm dx\\&=\int_0^1\sum_{i=0}^n\dbinom ni(-1)^i(1-x)^{m+i}\mathrm dx\\&=\int_0^1(1-x)^mx^n\mathrm dx\\&=\dfrac{n!m!}{(n+m+1)!}\end{aligned} \]

posted @ 2025-09-06 19:59  Jijidawang  阅读(265)  评论(4)    收藏  举报
😅​