mysql:流程控制与mysql8新特性

流程控制

LEAVE

LEAVE语句:可以用在循环语句内,或者以 BEGIN 和 END 包裹起来的程序体内,表示跳出循环或者跳出程序体的操作。如果你有面向过程的编程语言的使用经验,你可以把 LEAVE 理解为 break。

基本格式如下:

LEAVE 标记名

其中,label参数表示循环的标志。LEAVE和BEGIN ... END或循环一起被使用。

举例

#创“leave_begin()”,声明INT类型的IN参数num。给BEGIN...END加标记名,
#并在BEGIN...END中使用IF语句判断num参数的值。
#如果num<=0,则使用LEAVE语句退出BEGIN...END;
#如果num=1,则查询“employees”表的平均薪资;
#如果num=2,则查询“employees”表的最低薪资;
#如果num>2,则查询“employees”表的最高薪资。
#IF语句结束后查询“employees”表的总人数。
DELIMITER //
CREATE PROCEDURE leave_begin(IN num INT)
test_begin:BEGIN
	IF num<=0
		THEN LEAVE test_begin;
	ELSEIF num=1
		THEN SELECT AVG(salary) FROM employees;
	ELSEIF num=2
		THEN SELECT MIN(salary) FROM employees;
	ELSE
		SELECT MAX(salary) FROM employees;
	END IF;
	SELECT COUNT(*) FROM employees;
END//
DELIMITER ;

举例

#当市场环境不好时,公司为了渡过难关,决定暂时降低大家的薪资。声明存储过程“leave_while()”,
#声明OUT参数num,输出循环次数,存储过程中使用WHILE循环给大家降低薪资为原来薪资的90%,
#直到全公司的平均薪资小于等于10000,并统计循环次数。
DELIMITER //
CREATE PROCEDURE leave_while(OUT num INT)

BEGIN 
	DECLARE avg_sal DOUBLE;#记录平均工资
	DECLARE while_count INT DEFAULT 0; #记录循环次数
	
	SELECT AVG(salary) INTO avg_sal FROM employees; #① 初始化条件

	while_label:WHILE TRUE DO  #② 循环条件	
		#③ 循环体
		IF avg_sal <= 10000 THEN
			LEAVE while_label;
		END IF;
		UPDATE employees SET salary  = salary * 0.9;
		SET while_count = while_count + 1;
		#④ 迭代条件
		SELECT AVG(salary) INTO avg_sal FROM employees;
	END WHILE;
	#赋值
	SET num = while_count;
END //
DELIMITER ;

ITERATE

ITERATE语句:只能用在循环语句(LOOP、REPEAT和WHILE语句)内,表示重新开始循环,将执行顺序转到语句段开头处。如果你有面向过程的编程语言的使用经验,你可以把 ITERATE 理解为 continue,意思为“再次循环”。

语句基本格式如下:

ITERATE label

label参数表示循环的标志。ITERATE语句必须跟在循环标志前面。

举例:

举例

#定义局部变量num,初始值为0。循环结构中执行num + 1操作。
#如果num < 10,则继续执行循环;
#如果num > 15,则退出循环结构;
DELIMITER //
CREATE PROCEDURE test_iterate()

BEGIN
	DECLARE num INT DEFAULT 0;
	my_loop:LOOP
		SET num = num + 1;
		IF num < 10 
			THEN ITERATE my_loop;
		ELSEIF num > 15 
			THEN LEAVE my_loop;
		END IF;
		SELECT '尚硅谷:让天下没有难学的技术';
	END LOOP my_loop;
	
END //
DELIMITER ;

游标

什么是游标(或光标)

虽然我们也可以通过筛选条件 WHERE 和 HAVING,或者是限定返回记录的关键字 LIMIT 返回一条记录,但是,却无法在结果集中像指针一样,向前定位一条记录、向后定位一条记录,或者是随意定位到某一条记录,并对记录的数据进行处理。

这个时候,就可以用到游标。游标,提供了一种灵活的操作方式,让我们能够对结果集中的每一条记录进行定位,并对指向的记录中的数据进行操作的数据结构。游标让 SQL 这种面向集合的语言有了面向过程开发的能力。

在 SQL 中,游标是一种临时的数据库对象,可以指向存储在数据库表中的数据行指针。这里游标充当了指针的作用,我们可以通过操作游标来对数据行进行操作。

MySQL中游标可以在存储过程和函数中使用。

比如,我们查询了 employees 数据表中工资高于15000的员工都有哪些:

image

这里我们就可以通过游标来操作数据行,如图所示此时游标所在的行是“108”的记录,我们也可以在结果集上滚动游标,指向结果集中的任意一行。

语法

第一步,声明游标

在MySQL中,使用DECLARE关键字来声明游标,其语法的基本形式如下:

DECLARE cursor_name CURSOR FOR select_statement; 

这个语法适用于 MySQL,SQL Server,DB2 和 MariaDB。如果是用 Oracle 或者 PostgreSQL,需要写成:

DECLARE cursor_name CURSOR IS select_statement;

要使用 SELECT 语句来获取数据结果集,而此时还没有开始遍历数据,这里 select_statement 代表的是 SELECT 语句,返回一个用于创建游标的结果集。

比如:

DECLARE cur_emp CURSOR FOR 
SELECT employee_id,salary FROM employees;
DECLARE cursor_fruit CURSOR FOR 
SELECT f_name, f_price FROM fruits ;

第二步,打开游标

打开游标的语法如下:

OPEN cursor_name

当我们定义好游标之后,如果想要使用游标,必须先打开游标。打开游标的时候 SELECT 语句的查询结果集就会送到游标工作区,为后面游标的逐条读取结果集中的记录做准备。

OPEN cur_emp ;

第三步,使用游标(从游标中取得数据)

语法如下:

FETCH cursor_name INTO var_name [, var_name] ...

这句的作用是使用 cursor_name 这个游标来读取当前行,并且将数据保存到 var_name 这个变量中,游标指针指到下一行。如果游标读取的数据行有多个列名,则在 INTO 关键字后面赋值给多个变量名即可。

注意:var_name必须在声明游标之前就定义好。

FETCH cur_emp INTO emp_id, emp_sal ;

注意:游标的查询结果集中的字段数,必须跟 INTO 后面的变量数一致,否则,在存储过程执行的时候,MySQL 会提示错误。

第四步,关闭游标

CLOSE cursor_name

有 OPEN 就会有 CLOSE,也就是打开和关闭游标。当我们使用完游标后需要关闭掉该游标。因为游标会占用系统资源,如果不及时关闭,游标会一直保持到存储过程结束,影响系统运行的效率。而关闭游标的操作,会释放游标占用的系统资源。

关闭游标之后,我们就不能再检索查询结果中的数据行,如果需要检索只能再次打开游标。

CLOSE cur_emp;

举例

#创建存储过程“get_count_by_limit_total_salary()”,声明IN参数
#limit_total_salary,DOUBLE类型;声明OUT参数total_count,INT类型。
#函数的功能可以实现累加薪资最高的几个员工的薪资值,直到薪资总和达到
#limit_total_salary参数的值,返回累加的人数给total_count。
DELIMITER //
CREATE PROCEDURE get_count_by_limit_total_salary(IN limit_total_salary DOUBLE,OUT total_count INT)

BEGIN
	DECLARE emp_salary_sum DOUBLE DEFAULT 0.0;
	DECLARE emp_count INT DEFAULT 0;
	DECLARE emp_salary DOUBLE;
	#1.声明游标
	DECLARE emp_cursor CURSOR FOR SELECT salary 
		FROM employees ORDER BY salary DESC;
	#2.打开游标
	OPEN emp_cursor;
	REPEAT
		#3.使用游标
		FETCH emp_cursor INTO emp_salary;
		SET emp_salary_sum=emp_salary_sum+emp_salary;
		SET emp_count=emp_count+1;
  UNTIL emp_salary_sum>limit_total_salary
	END REPEAT;
	
	SET total_count=emp_count;
	#4.关闭游标
	CLOSE emp_cursor;
	
END//
DELIMITER ;

小 结

游标是 MySQL 的一个重要的功能,为逐条读取结果集中的数据,提供了完美的解决方案。跟在应用层面实现相同的功能相比,游标可以在存储程序中使用,效率高,程序也更加简洁。

但同时也会带来一些性能问题,比如在使用游标的过程中,会对数据行进行加锁,这样在业务并发量大的时候,不仅会影响业务之间的效率,还会消耗系统资源,造成内存不足,这是因为游标是在内存中进行的处理。

建议:养成用完之后就关闭的习惯,这样才能提高系统的整体效率。


流程控制、游标练习

#1. 创建函数test_if_case(),实现传入成绩,如果成绩>90,返回A,
#如果成绩>80,返回B,如果成绩>60,返回C,否则返回D
#要求:分别使用if结构和case结构实现
#if
DELIMITER //
CREATE FUNCTION test_if(sorce INT)
RETURNS CHAR
	DETERMINISTIC 
	CONTAINS SQL
	READS SQL DATA 
	BEGIN
	DECLARE grade CHAR;
	IF sorce >90
		THEN SET grade ='A';
	ELSEIF sorce>80
		THEN SET grade ='B';
	ELSEIF sorce>60
		THEN SET grade ='C';
	ELSE SET grade ='D';
	END IF;
	RETURN grade;
END//
DELIMITER ;
#case
DELIMITER //
CREATE FUNCTION test_case(sorce INT)
RETURNS CHAR
	DETERMINISTIC 
	CONTAINS SQL
	READS SQL DATA 
	BEGIN
		DECLARE grade CHAR;
		CASE
		WHEN sorce>90
		THEN SET grade='A';
		WHEN sorce>80
		THEN SET grade='B';
		WHEN sorce>60
		THEN SET grade='C';
		ELSE SET grade='D';
	END CASE;
	RETURN grade;
END//
DELIMITER ;
#2. 创建存储过程test_if_pro(),传入工资值,如果工资值<3000,则删除工资为此值的员工,
#如果3000 <= 工资值 <= 5000,则修改此工资值的员工薪资涨1000,否则涨工资500
DELIMITER //
CREATE PROCEDURE test_if_pro(IN emp_salary DOUBLE)
BEGIN
	IF emp_salary<3000
		THEN DELETE FROM employees WHERE salary=emp_salary;
	ELSEIF emp_salary<=5000 
		THEN UPDATE employees SET salary=salary+1000 WHERE salary=emp_salary;
	ELSE 
		UPDATE employees SET salary=salary+500 WHERE salary=emp_salary;
	END IF;
END//
DELIMITER ;
#3. 创建存储过程insert_data(),传入参数为 IN 的 INT 类型变量 insert_count,实现向admin表中批量插入insert_count条记录
DELIMITER //
CREATE PROCEDURE insert_data(IN `count` INT)
BEGIN
	DECLARE insert_count INT DEFAULT 1;
	WHILE insert_count<=`count` DO 
	INSERT INTO `admin`(user_name,user_pwd) 
		VALUES(CONCAT('boerk',insert_count),ROUND(RAND()*1000000));
		SET insert_count = insert_count + 1;
	END WHILE;

END //

DELIMITER ;
#创建存储过程update_salary(),参数1为 IN 的INT型变量dept_id,
#表示部门id;参数2为 IN的INT型变量change_sal_count,表示要调整薪资的员工个数。
#查询指定id部门的员工信息,按照salary升序排列,根据hire_date的情况,
#调整前change_sal_count个员工的薪资,详情如下。
DELIMITER //
CREATE PROCEDURE update_salary(IN dept_id INT,IN change_sal_count INT )
BEGIN

	DECLARE emp_salary DOUBLE;
	DECLARE emp_hiredate DATETIME;
	DECLARE emp_count INT DEFAULT 0;
	DECLARE emp_id INT;
	DECLARE emp_hiredate_cursor CURSOR FOR SELECT hire_date FROM employees WHERE department_id=dept_id ORDER BY salary ASC;
	DECLARE emp_id_cursor CURSOR FOR SELECT employee_id FROM employees WHERE department_id=dept_id ORDER BY salary ASC;
	OPEN emp_hiredate_cursor;
	OPEN emp_id_cursor;
	WHILE emp_count<change_sal_count DO
	FETCH emp_hiredate_cursor INTO emp_hiredate;
	FETCH emp_id_cursor INTO emp_id;
	IF emp_hiredate<1995
		THEN UPDATE employees SET salary =salary *1.2 WHERE employee_id = emp_id;
	ELSEIF emp_hiredate<=1998
		THEN UPDATE employees SET salary =salary *1.15 WHERE employee_id = emp_id;
	ELSEIF emp_hiredate<=2001
		THEN UPDATE employees SET salary =salary *1.1 WHERE employee_id = emp_id;
	ELSE
		 UPDATE employees SET salary =salary *1.05 WHERE employee_id = emp_id;
	END IF;
	SET emp_hiredate =emp_hiredate +1;
	END WHILE;
	CLOSE emp_hiredate_cursor;
	CLOSE emp_id_cursor;
END //
DELIMITER ;

触发器

在实际开发中,我们经常会遇到这样的情况:有 2 个或者多个相互关联的表,如商品信息库存信息分别存放在 2 个不同的数据表中,我们在添加一条新商品记录的时候,为了保证数据的完整性,必须同时在库存表中添加一条库存记录。

这样一来,我们就必须把这两个关联的操作步骤写到程序里面,而且要用事务包裹起来,确保这两个操作成为一个原子操作,要么全部执行,要么全部不执行。要是遇到特殊情况,可能还需要对数据进行手动维护,这样就很容易忘记其中的一步,导致数据缺失。

这个时候,咱们可以使用触发器。你可以创建一个触发器,让商品信息数据的插入操作自动触发库存数据的插入操作。这样一来,就不用担心因为忘记添加库存数据而导致的数据缺失了。

语法

CREATE TRIGGER 触发器名称 
{BEFORE|AFTER} {INSERT|UPDATE|DELETE} ON 表名 
FOR EACH ROW 
触发器执行的语句块;

说明:

  • 表名:表示触发器监控的对象。

  • BEFORE|AFTER:表示触发的时间。BEFORE 表示在事件之前触发;AFTER 表示在事件之后触发。

  • INSERT|UPDATE|DELETE:表示触发的事件。

    • INSERT 表示插入记录时触发;
    • UPDATE 表示更新记录时触发;
    • DELETE 表示删除记录时触发。
  • 触发器执行的语句块:可以是单条SQL语句,也可以是由BEGIN…END结构组成的复合语句块。


举例

#创建触发器:创建名称为before_insert的触发器,向test_trigger数据表插入数据之前,向test_trigger_log数据表中插入before_insert的日志信息。
DELIMITER //
CREATE TRIGGER before_insert
BEFORE INSERT ON test_trigger
FOR EACH ROW
BEGIN
	INSERT INTO test_trigger_log(t_log)
	VALUES("brfore insert a log");

END //

DELIMITER ;

举例2

#定义触发器“salary_check_trigger”,基于员工表“employees”的INSERT事件,
#在INSERT之前检查将要添加的新员工薪资是否大于他领导的薪资,如果大于领导薪资,
#则报sqlstate_value为'HY000'的错误,从而使得添加失败。
DELIMITER //

CREATE TRIGGER salary_check_trigger
BEFORE INSERT ON employees FOR EACH ROW
BEGIN
	DECLARE mgrsalary DOUBLE;
	SELECT salary INTO mgrsalary FROM employees WHERE employee_id = NEW.manager_id;
	#使用new指代本次添加的结果集。
	IF NEW.salary > mgrsalary THEN
		#自定义异常
		SIGNAL SQLSTATE 'HY000' SET MESSAGE_TEXT = '薪资高于领导薪资错误';
	END IF;
END //

DELIMITER ;

查看触发器

方式1:查看当前数据库的所有触发器的定义

SHOW TRIGGERS\G

方式2:查看当前数据库中某个触发器的定义

SHOW CREATE TRIGGER 触发器名

方式3:从系统库information_schema的TRIGGERS表中查询“salary_check_trigger”触发器的信息。

SELECT * FROM information_schema.TRIGGERS;

删除触发器

触发器也是数据库对象,删除触发器也用DROP语句,语法格式如下:

DROP TRIGGER  IF EXISTS 触发器名称;

触发器的优缺点

优点

触发器可以确保数据的完整性**。

假设我们用进货单头表(demo.importhead)来保存进货单的总体信息,包括进货单编号、供货商编号、仓库编号、总计进货数量、总计进货金额和验收日期。

image

进货单明细表(demo.importdetails)来保存进货商品的明细,包括进货单编号、商品编号、进货数量、进货价格和进货金额。

image

每当我们录入、删除和修改一条进货单明细数据的时候,进货单明细表里的数据就会发生变动。这个时候,在进货单头表中的总计数量和总计金额就必须重新计算,否则,进货单头表中的总计数量和总计金额就不等于进货单明细表中数量合计和金额合计了,这就是数据不一致。

为了解决这个问题,我们就可以使用触发器,规定每当进货单明细表有数据插入、修改和删除的操作时,自动触发 2 步操作:

1)重新计算进货单明细表中的数量合计和金额合计;

2)用第一步中计算出来的值更新进货单头表中的合计数量与合计金额。

这样一来,进货单头表中的合计数量与合计金额的值,就始终与进货单明细表中计算出来的合计数量与合计金额的值相同,数据就是一致的,不会互相矛盾。

2、触发器可以帮助我们记录操作日志。

利用触发器,可以具体记录什么时间发生了什么。比如,记录修改会员储值金额的触发器,就是一个很好的例子。这对我们还原操作执行时的具体场景,更好地定位问题原因很有帮助。

3、触发器还可以用在操作数据前,对数据进行合法性检查。

比如,超市进货的时候,需要库管录入进货价格。但是,人为操作很容易犯错误,比如说在录入数量的时候,把条形码扫进去了;录入金额的时候,看串了行,录入的价格远超售价,导致账面上的巨亏……这些都可以通过触发器,在实际插入或者更新操作之前,对相应的数据进行检查,及时提示错误,防止错误数据进入系统。

缺点

1、触发器最大的一个问题就是可读性差。

因为触发器存储在数据库中,并且由事件驱动,这就意味着触发器有可能不受应用层的控制。这对系统维护是非常有挑战的。

比如,创建触发器用于修改会员储值操作。如果触发器中的操作出了问题,会导致会员储值金额更新失败。我用下面的代码演示一下:

mysql> update demo.membermaster set memberdeposit=20 where memberid = 2;
ERROR 1054 (42S22): Unknown column 'aa' in 'field list'

结果显示,系统提示错误,字段“aa”不存在。

这是因为,触发器中的数据插入操作多了一个字段,系统提示错误。可是,如果你不了解这个触发器,很可能会认为是更新语句本身的问题,或者是会员信息表的结构出了问题。说不定你还会给会员信息表添加一个叫“aa”的字段,试图解决这个问题,结果只能是白费力。

2、相关数据的变更,可能会导致触发器出错。

特别是数据表结构的变更,都可能会导致触发器出错,进而影响数据操作的正常运行。这些都会由于触发器本身的隐蔽性,影响到应用中错误原因排查的效率。

注意点

注意,如果在子表中定义了外键约束,并且外键指定了ON UPDATE/DELETE CASCADE/SET NULL子句,此时修改父表被引用的键值或删除父表被引用的记录行时,也会引起子表的修改和删除操作,此时基于子表的UPDATE和DELETE语句定义的触发器并不会被激活。

例如:基于子表员工表(t_employee)的DELETE语句定义了触发器t1,而子表的部门编号(did)字段定义了外键约束引用了父表部门表(t_department)的主键列部门编号(did),并且该外键加了“ON DELETE SET NULL”子句,那么如果此时删除父表部门表(t_department)在子表员工表(t_employee)有匹配记录的部门记录时,会引起子表员工表(t_employee)匹配记录的部门编号(did)修改为NULL,但是此时不会激活触发器t1。只有直接对子表员工表(t_employee)执行DELETE语句时才会激活触发器t1。


触发器的课后练习

#0. 准备工作
CREATE TABLE emps AS
SELECT employee_id,last_name,salary 
FROM atguigudb.`employees`;
#1. 复制一张emps表的空表emps_back,只有表结构,不包含任何数据
CREATE TABLE emps_back AS
SELECT * FROM emps 
WHERE 1=3;
#2. 查询emps_back表中的数据
SELECT * FROM emps_back
#3.   创建触发器emps_insert_trigger,每当向emps表中添加一条记录时,同步将这条记录添加到emps_back表中
DELIMITER //
CREATE TRIGGER emps_insert_trigger
BEFORE INSERT ON emps
FOR EACH ROW
BEGIN
	INSERT INTO emps_back VALUES(NEW.employee_id,NEW.last_name,NEW.salary);
END//
DELIMITER ;
#4. 验证触发器是否起作用
INSERT INTO emps VALUES(300,'Boerk',21000)

Mysql8.0的新特性

新增的特性

1. 更简便的NoSQL支持
NoSQL泛指非关系型数据库和数据存储。随着互联网平台的规模飞速发展,传统的关系型数据库已经越来越不能满足需求。从5.6版本开始,MySQL就开始支持简单的NoSQL存储功能。MySQL 8对这一功能做了优化,以更灵活的方式实现NoSQL功能,不再依赖模式(schema)。

2. 更好的索引
在查询中,正确地使用索引可以提高查询的效率。MySQL 8中新增了隐藏索引降序索引。隐藏索引可以用来测试去掉索引对查询性能的影响。在查询中混合存在多列索引时,使用降序索引可以提高查询的性能。

3.更完善的JSON支持
MySQL从5.7开始支持原生JSON数据的存储,MySQL 8对这一功能做了优化,增加了聚合函数JSON_ARRAYAGG()JSON_OBJECTAGG(),将参数聚合为JSON数组或对象,新增了行内操作符 ->>,是列路径运算符 ->的增强,对JSON排序做了提升,并优化了JSON的更新操作。

4.安全和账户管理
MySQL 8中新增了caching_sha2_password 授权插件、角色、密码历史记录和FIPS模式支持,这些特性提高了数据库的安全性和性能,使数据库管理员能够更灵活地进行账户管理工作。

5.InnoDB的变化
InnoDB是MySQL默认的存储引擎,是事务型数据库的首选引擎,支持事务安全表(ACID),支持行锁定和外键。在MySQL 8 版本中,InnoDB在自增、索引、加密、死锁、共享锁等方面做了大量的改进和优化,并且支持原子数据定义语言(DDL),提高了数据安全性,对事务提供更好的支持。

6.数据字典
在之前的MySQL版本中,字典数据都存储在元数据文件和非事务表中。从MySQL 8开始新增了事务数据字典,在这个字典里存储着数据库对象信息,这些数据字典存储在内部事务表中。

7. 原子数据定义语句
MySQL 8开始支持原子数据定义语句(Automic DDL),即原子DDL。目前,只有InnoDB存储引擎支持原子DDL。原子数据定义语句(DDL)将与DDL操作相关的数据字典更新、存储引擎操作、二进制日志写入结合到一个单独的原子事务中,这使得即使服务器崩溃,事务也会提交或回滚。
使用支持原子操作的存储引擎所创建的表,在执行DROP TABLE、CREATE TABLE、ALTER TABLE、 RENAME TABLE、TRUNCATE TABLE、CREATE TABLESPACE、DROP TABLESPACE等操作时,都支持原子操作,即事务要么完全操作成功,要么失败后回滚,不再进行部分提交。
对于从MySQL 5.7复制到MySQL 8 版本中的语句,可以添加IF EXISTSIF NOT EXISTS语句来避免发生错误。

8.资源管理
MySQL 8开始支持创建和管理资源组,允许将服务器内运行的线程分配给特定的分组,以便线程根据组内可用资源执行。组属性能够控制组内资源,启用或限制组内资源消耗。数据库管理员能够根据不同的工作负载适当地更改这些属性。
目前,CPU时间是可控资源,由“虚拟CPU”这个概念来表示,此术语包含CPU的核心数,超线程,硬件线程等等。服务器在启动时确定可用的虚拟CPU数量。拥有对应权限的数据库管理员可以将这些CPU与资源组关联,并为资源组分配线程。
资源组组件为MySQL中的资源组管理提供了SQL接口。资源组的属性用于定义资源组。MySQL中存在两个默认组,系统组和用户组,默认的组不能被删除,其属性也不能被更改。对于用户自定义的组,资源组创建时可初始化所有的属性,除去名字和类型,其他属性都可在创建之后进行更改。
在一些平台下,或进行了某些MySQL的配置时,资源管理的功能将受到限制,甚至不可用。例如,如果安装了线程池插件,或者使用的是macOS系统,资源管理将处于不可用状态。在FreeBSD和Solaris系统中,资源线程优先级将失效。在Linux系统中,只有配置了CAP_SYS_NICE属性,资源管理优先级才能发挥作用。

9.字符集支持
MySQL 8中默认的字符集由latin1更改为utf8mb4,并首次增加了日语所特定使用的集合,utf8mb4_ja_0900_as_cs。

10.优化器增强
MySQL优化器开始支持隐藏索引和降序索引。隐藏索引不会被优化器使用,验证索引的必要性时不需要删除索引,先将索引隐藏,如果优化器性能无影响就可以真正地删除索引。降序索引允许优化器对多个列进行排序,并且允许排序顺序不一致。

11.公用表表达式
公用表表达式(Common Table Expressions)简称为CTE,MySQL现在支持递归和非递归两种形式的CTE。CTE通过在SELECT语句或其他特定语句前使用WITH语句对临时结果集进行命名。

基础语法如下:

WITH cte_name (col_name1,col_name2 ...) AS (Subquery)
SELECT * FROM cte_name;

Subquery代表子查询,子查询前使用WITH语句将结果集命名为cte_name,在后续的查询中即可使用cte_name进行查询。

12.窗口函数
MySQL 8开始支持窗口函数。在之前的版本中已存在的大部分聚合函数在MySQL 8中也可以作为窗口函数来使用。

image

13.正则表达式支持
MySQL在8.0.4以后的版本中采用支持Unicode的国际化组件库实现正则表达式操作,这种方式不仅能提供完全的Unicode支持,而且是多字节安全编码。MySQL增加了REGEXP_LIKE()、EGEXP_INSTR()、REGEXP_REPLACE()和 REGEXP_SUBSTR()等函数来提升性能。另外,regexp_stack_limit和regexp_time_limit 系统变量能够通过匹配引擎来控制资源消耗。

14.内部临时表
TempTable存储引擎取代MEMORY存储引擎成为内部临时表的默认存储引擎。TempTable存储引擎为VARCHAR和VARBINARY列提供高效存储。internal_tmp_mem_storage_engine会话变量定义了内部临时表的存储引擎,可选的值有两个,TempTable和MEMORY,其中TempTable为默认的存储引擎。temptable_max_ram系统配置项定义了TempTable存储引擎可使用的最大内存数量。

15.日志记录
在MySQL 8中错误日志子系统由一系列MySQL组件构成。这些组件的构成由系统变量log_error_services来配置,能够实现日志事件的过滤和写入。

16.备份锁
新的备份锁允许在线备份期间执行数据操作语句,同时阻止可能造成快照不一致的操作。新备份锁由 LOCK INSTANCE FOR BACKUP 和 UNLOCK INSTANCE 语法提供支持,执行这些操作需要备份管理员特权。

17.增强的MySQL复制
MySQL 8复制支持对JSON文档进行部分更新的二进制日志记录,该记录使用紧凑的二进制格式,从而节省记录完整JSON文档的空间。当使用基于语句的日志记录时,这种紧凑的日志记录会自动完成,并且可以通过将新的binlog_row_value_options系统变量值设置为PARTIAL_JSON来启用。

删除的特性

在MySQL 5.7版本上开发的应用程序如果使用了MySQL8.0 移除的特性,语句可能会失败,或者产生不同的执行结果。为了避免这些问题,对于使用了移除特性的应用,应当尽力修正避免使用这些特性,并尽可能使用替代方法。

1. 查询缓存
查询缓存已被移除,删除的项有:
(1)语句:FLUSH QUERY CACHE和RESET QUERY CACHE。
(2)系统变量:query_cache_limit、query_cache_min_res_unit、query_cache_size、query_cache_type、query_cache_wlock_invalidate。
(3)状态变量:Qcache_free_blocks、Qcache_free_memory、Qcache_hits、Qcache_inserts、Qcache_lowmem_prunes、Qcache_not_cached、Qcache_queries_in_cache、Qcache_total_blocks。
(4)线程状态:checking privileges on cached query、checking query cache for query、invalidating query cache entries、sending cached result to client、storing result in query cache、waiting for query cache lock。

2.加密相关
删除的加密相关的内容有:ENCODE()、DECODE()、ENCRYPT()、DES_ENCRYPT()和DES_DECRYPT()函数,配置项des-key-file,系统变量have_crypt,FLUSH语句的DES_KEY_FILE选项,HAVE_CRYPT CMake选项。
对于移除的ENCRYPT()函数,考虑使用SHA2()替代,对于其他移除的函数,使用AES_ENCRYPT()和AES_DECRYPT()替代。

3.空间函数相关
在MySQL 5.7版本中,多个空间函数已被标记为过时。这些过时函数在MySQL 8中都已被移除,只保留了对应的ST_和MBR函数。

4.\N和NULL
在SQL语句中,解析器不再将\N视为NULL,所以在SQL语句中应使用NULL代替\N。这项变化不会影响使用LOAD DATA INFILE或者SELECT...INTO OUTFILE操作文件的导入和导出。在这类操作中,NULL仍等同于\N。

5. mysql_install_db
在MySQL分布中,已移除了mysql_install_db程序,数据字典初始化需要调用带着--initialize或者--initialize-insecure选项的mysqld来代替实现。另外,--bootstrap和INSTALL_SCRIPTDIR CMake也已被删除。

6.通用分区处理程序
通用分区处理程序已从MySQL服务中被移除。为了实现给定表分区,表所使用的存储引擎需要自有的分区处理程序。
提供本地分区支持的MySQL存储引擎有两个,即InnoDB和NDB,而在MySQL 8中只支持InnoDB。

7.系统和状态变量信息
在INFORMATION_SCHEMA数据库中,对系统和状态变量信息不再进行维护。GLOBAL_VARIABLES、SESSION_VARIABLES、GLOBAL_STATUS、SESSION_STATUS表都已被删除。另外,系统变量show_compatibility_56也已被删除。被删除的状态变量有Slave_heartbeat_period、Slave_last_heartbeat,Slave_received_heartbeats、Slave_retried_transactions、Slave_running。以上被删除的内容都可使用性能模式中对应的内容进行替代。

8.mysql_plugin工具
mysql_plugin工具用来配置MySQL服务器插件,现已被删除,可使用--plugin-load或--plugin-load-add选项在服务器启动时加载插件或者在运行时使用INSTALL PLUGIN语句加载插件来替代该工具。

窗口函数

使用窗口函数前后对比

假设我现在有这样一个数据表,它显示了某购物网站在每个城市每个区的销售额:

CREATE TABLE sales(
id INT PRIMARY KEY AUTO_INCREMENT,
city VARCHAR(15),
county VARCHAR(15),
sales_value DECIMAL

);

INSERT INTO sales(city,county,sales_value)
VALUES
('北京','海淀',10.00),
('北京','朝阳',20.00),
('上海','黄埔',30.00),
('上海','长宁',10.00);

查询:

mysql> SELECT * FROM sales;
+----+------+--------+-------------+
| id | city | county | sales_value |
+----+------+--------+-------------+
|  1 | 北京 | 海淀    |          10 |
|  2 | 北京 | 朝阳    |          20 |
|  3 | 上海 | 黄埔    |          30 |
|  4 | 上海 | 长宁    |          10 |
+----+------+--------+-------------+
4 rows in set (0.00 sec)

需求:现在计算这个网站在每个城市的销售总额、在全国的销售总额、每个区的销售额占所在城市销售额中的比率,以及占总销售额中的比率。

如果用分组和聚合函数,就需要分好几步来计算。

#实现方式一
#第一步,计算总销售金额,并存入临时表 a:
CREATE TEMPORARY TABLE a       -- 创建临时表
SELECT SUM(sales_value) AS sales_value -- 计算总计金额
FROM sales;
#第二步,计算每个城市的销售总额并存入临时表 b:
CREATE TEMPORARY TABLE b    -- 创建临时表
SELECT city,SUM(sales_value) AS sales_value  -- 计算城市销售合计
FROM sales
GROUP BY city;
#第三步,计算各区的销售占所在城市的总计金额的比例,和占全部销售总计金额的比例。我们可以通过下面的连接查询获得需要的结果:
SELECT s.city AS 城市,s.county AS 区,s.sales_value AS 区销售额,
b.sales_value AS 市销售额,s.sales_value/b.sales_value AS 市比率,
a.sales_value AS 总销售额,s.sales_value/a.sales_value AS 总比率
ROM sales s
JOIN b ON (s.city=b.city) -- 连接市统计结果临时表
JOIN a                   -- 连接总计金额临时表
ORDER BY s.city,s.county;
#输出结果
+------+------+----------+----------+--------+----------+--------+
| 城市  | 区   | 区销售额  | 市销售额   | 市比率  | 总销售额  | 总比率  |
+------+------+----------+----------+--------+----------+--------+
| 上海  | 长宁 |       10 |       40  | 0.2500 |       70 | 0.1429 |
| 上海  | 黄埔 |       30 |       40  | 0.7500 |       70 | 0.4286 |
| 北京  | 朝阳 |       20 |       30  | 0.6667 |       70 | 0.2857 |
| 北京  | 海淀 |       10 |       30  | 0.3333 |       70 | 0.1429 |
+------+------+----------+-----------+--------+----------+--------+
4 rows in set (0.00 sec)
#方式二
SELECT city AS 城市,county AS 区,sales_value AS 区销售额,
SUM(sales_value) OVER(PARTITION BY city) AS 市销售额,  -- 计算市销售额
sales_value/SUM(sales_value) OVER(PARTITION BY city) AS 市比率,
SUM(sales_value) OVER() AS 总销售额,   -- 计算总销售额
sales_value/SUM(sales_value) OVER() AS 总比率
FROM sales
ORDER BY city,county;

结果显示,我们得到了与上面那种查询同样的结果。

使用窗口函数,只用了一步就完成了查询。而且,由于没有用到临时表,执行的效率也更高了。很显然,在这种需要用到分组统计的结果对每一条记录进行计算的场景下,使用窗口函数更好

窗口函数的分类

MySQL从8.0版本开始支持窗口函数。窗口函数的作用类似于在查询中对数据进行分组,不同的是,分组操作会把分组的结果聚合成一条记录,而窗口函数是将结果置于每一条数据记录中。

窗口函数可以分为静态窗口函数动态窗口函数

  • 静态窗口函数的窗口大小是固定的,不会因为记录的不同而不同;
  • 动态窗口函数的窗口大小会随着记录的不同而变化。

image

语法

窗口函数的语法结构是:

函数 OVER([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])

或者是:

函数 OVER 窗口名 … WINDOW 窗口名 AS ([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])
  • OVER 关键字指定函数窗口的范围。
    • 如果省略后面括号中的内容,则窗口会包含满足WHERE条件的所有记录,窗口函数会基于所有满足WHERE条件的记录进行计算。
    • 如果OVER关键字后面的括号不为空,则可以使用如下语法设置窗口。
  • 窗口名:为窗口设置一个别名,用来标识窗口。
  • PARTITION BY子句:指定窗口函数按照哪些字段进行分组。分组后,窗口函数可以在每个分组中分别执行。
  • ORDER BY子句:指定窗口函数按照哪些字段进行排序。执行排序操作使窗口函数按照排序后的数据记录的顺序进行编号。
  • FRAME子句:为分区中的某个子集定义规则,可以用来作为滑动窗口使用。

举例

  • ROW_NUMBER()

ROW_NUMBER()函数能够对数据中的序号进行顺序显示。

#例子一 查询 goods 数据表中每个商品分类下价格降序排列的各个商品信息。
SELECT ROW_NUMBER() OVER (PARTITION BY category_id ORDER BY price DESC) 
AS row_num,id,category_id,category,`NAME`,price,stock,upper_time
FROM goods;
#例子二 查询 goods 数据表中每个商品分类下价格最高的3种商品信息。
SELECT *FROM (
    			SELECT ROW_NUMBER() OVER (PARTITION BY category_id ORDER BY price DESC) 
             	AS row_num,id,category_id,category,`NAME`,price,stock,upper_time
              	FROM goods
				) t
WHERE row_num<=3;
#Every derived table must have its own alias 派生表必须有别名
  • RANK()函数

使用RANK()函数能够对序号进行并列排序,并且会跳过重复的序号,比如序号为1、1、3。

#例子1
SELECT RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
id, category_id, category, NAME, price, stock
FROM goods;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category      | NAME       | price   | stock |
+---------+----+-------------+---------------+------------+---------+-------+
|       1 |  6 |           1 | 女装/女士精品   | 呢绒外套    |  399.90 |  1200 |
|       2 |  3 |           1 | 女装/女士精品   | 卫衣        |   89.90 |  1500 |
|       2 |  4 |           1 | 女装/女士精品   | 牛仔裤      |   89.90 |  3500 |
|       4 |  2 |           1 | 女装/女士精品   | 连衣裙      |   79.90 |  2500 |
|       5 |  1 |           1 | 女装/女士精品   | T恤         |   39.90 |  1000 |
|       6 |  5 |           1 | 女装/女士精品   | 百褶裙      |   29.90 |   500 |
|       1 |  8 |           2 | 户外运动       | 山地自行车   | 1399.90 |  2500 |
|       2 | 11 |           2 | 户外运动       | 运动外套     |  799.90 |   500 |
|       3 | 12 |           2 | 户外运动       | 滑板        |  499.90 |  1200 |
|       4 |  7 |           2 | 户外运动       | 自行车      |  399.90 |  1000 |
|       4 | 10 |           2 | 户外运动       | 骑行装备    |  399.90 |  3500 |
|       6 |  9 |           2 | 户外运动       | 登山杖      |   59.90 |  1500 |
+---------+----+-------------+---------------+------------+---------+-------+
12 rows in set (0.00 sec)
#例子2
#使用RANK()函数获取 goods 数据表中类别为“女装/女士精品”的价格最高的4款商品信息。
SELECT * FROM (
    			SELECT RANK() OVER (PARTITION BY category_id ORDER BY price DESC)
    			AS row_num,id,category_id,category,`NAME`,price,stock
    			FROM goods
				) t
WHERE row_num<=4 AND category_id=1;
  • DENSE_RANK()函数

    DENSE_RANK()函数对序号进行并列排序,并且不会跳过重复的序号,比如序号为1、1、2。

#例子1 使用DENSE_RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息。
SELECT DENSE_RANK() OVER(PARTITION BY category_id 
                         ORDER BY price DESC
                        )
AS row_num,id,category_id,category,
`NAME`,price,stock FROM goods

  • 分布函数(我就看看。。)

  • PERCENT_RANK()函数

PERCENT_RANK()函数是等级值百分比函数。按照如下方式进行计算。

 (rank - 1) / (rows - 1)

其中,rank的值为使用RANK()函数产生的序号,rows的值为当前窗口的总记录数。

举例:计算 goods 数据表中名称为“女装/女士精品”的类别下的商品的PERCENT_RANK值。

#写法一:
SELECT RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS r,
PERCENT_RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS pr,
id, category_id, category, NAME, price, stock
FROM goods
WHERE category_id = 1;

#写法二:
mysql> SELECT RANK() OVER w AS r,
    -> PERCENT_RANK() OVER w AS pr,
    -> id, category_id, category, NAME, price, stock
    -> FROM goods
    -> WHERE category_id = 1 WINDOW w AS (PARTITION BY category_id ORDER BY price DESC);
+---+-----+----+-------------+---------------+----------+--------+-------+
| r | pr  | id | category_id | category      | NAME     | price  | stock |
+---+-----+----+-------------+---------------+----------+--------+-------+
| 1 |   0 |  6 |           1 | 女装/女士精品   | 呢绒外套  | 399.90 |  1200 |
| 2 | 0.2 |  3 |           1 | 女装/女士精品   | 卫衣     |  89.90 |  1500 |
| 2 | 0.2 |  4 |           1 | 女装/女士精品   | 牛仔裤   |  89.90 |  3500  |
| 4 | 0.6 |  2 |           1 | 女装/女士精品   | 连衣裙   |  79.90 |  2500  |
| 5 | 0.8 |  1 |           1 | 女装/女士精品   | T恤      |  39.90 |  1000 |
| 6 |   1 |  5 |           1 | 女装/女士精品   | 百褶裙   |  29.90  |   500 |
+---+-----+----+-------------+---------------+----------+--------+-------+
6 rows in set (0.00 sec)

2.CUME_DIST()函数

CUME_DIST()函数主要用于查询小于或等于某个值的比例。

举例:查询goods数据表中小于或等于当前价格的比例。

mysql> SELECT CUME_DIST() OVER(PARTITION BY category_id ORDER BY price ASC) AS cd,
    -> id, category, NAME, price
    -> FROM goods;
+---------------------+----+---------------+------------+---------+
| cd                  | id | category      | NAME       | price   |
+---------------------+----+---------------+------------+---------+
| 0.16666666666666666 |  5 | 女装/女士精品   | 百褶裙      |   29.90 |
|  0.3333333333333333 |  1 | 女装/女士精品   | T恤        |   39.90 |
|                 0.5 |  2 | 女装/女士精品   | 连衣裙      |   79.90 |
|  0.8333333333333334 |  3 | 女装/女士精品   | 卫衣        |   89.90 |
|  0.8333333333333334 |  4 | 女装/女士精品   | 牛仔裤      |   89.90 |
|                   1 |  6 | 女装/女士精品   | 呢绒外套    |  399.90 |
| 0.16666666666666666 |  9 | 户外运动       | 登山杖      |   59.90 |
|                 0.5 |  7 | 户外运动       | 自行车      |  399.90 |
|                 0.5 | 10 | 户外运动       | 骑行装备     |  399.90 |
|  0.6666666666666666 | 12 | 户外运动       | 滑板        |  499.90 |
|  0.8333333333333334 | 11 | 户外运动       | 运动外套    |  799.90 |
|                   1 |  8 | 户外运动       | 山地自行车   | 1399.90 |
+---------------------+----+---------------+------------+---------+
12 rows in set (0.00 sec)
  • 前后函数

1.LAG(expr,n)函数

LAG(expr,n)函数返回当前行的前n行的expr的值。

举例:查询goods数据表中前一个商品价格与当前商品价格的差值。

mysql> SELECT id, category, NAME, price, pre_price, price - pre_price AS diff_price
    -> FROM (
    ->  SELECT  id, category, NAME, price,LAG(price,1) OVER w AS pre_price
    ->  FROM goods
    ->  WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
+----+---------------+------------+---------+-----------+------------+
| id | category      | NAME       | price   | pre_price | diff_price |
+----+---------------+------------+---------+-----------+------------+
|  5 | 女装/女士精品   | 百褶裙      |   29.90 |      NULL |       NULL |
|  1 | 女装/女士精品   | T恤        |   39.90 |     29.90 |      10.00 |
|  2 | 女装/女士精品   | 连衣裙      |   79.90 |     39.90 |      40.00 |
|  3 | 女装/女士精品   | 卫衣       |   89.90 |     79.90 |      10.00 |
|  4 | 女装/女士精品   | 牛仔裤      |   89.90 |     89.90 |       0.00 |
|  6 | 女装/女士精品   | 呢绒外套    |  399.90 |     89.90 |     310.00 |
|  9 | 户外运动       | 登山杖      |   59.90 |      NULL |       NULL |
|  7 | 户外运动       | 自行车      |  399.90 |     59.90 |     340.00 |
| 10 | 户外运动       | 骑行装备    |  399.90 |    399.90 |       0.00 |
| 12 | 户外运动       | 滑板       |  499.90 |    399.90 |     100.00 |
| 11 | 户外运动       | 运动外套    |  799.90 |    499.90 |     300.00 |
|  8 | 户外运动       | 山地自行车  | 1399.90 |    799.90 |     600.00 |
+----+---------------+------------+---------+-----------+------------+
12 rows in set (0.00 sec)

2.LEAD(expr,n)函数

LEAD(expr,n)函数返回当前行的后n行的expr的值。

举例:查询goods数据表中后一个商品价格与当前商品价格的差值。

mysql> SELECT id, category, NAME, behind_price, price,behind_price - price AS diff_price
    -> FROM(
    ->  SELECT id, category, NAME, price,LEAD(price, 1) OVER w AS behind_price
    ->  FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
+----+---------------+------------+--------------+---------+------------+
| id | category      | NAME       | behind_price | price   | diff_price |
+----+---------------+------------+--------------+---------+------------+
|  5 | 女装/女士精品   | 百褶裙      |        39.90 |   29.90 |      10.00 |
|  1 | 女装/女士精品   | T恤        |        79.90 |   39.90 |      40.00 |
|  2 | 女装/女士精品   | 连衣裙      |        89.90 |   79.90 |      10.00 |
|  3 | 女装/女士精品   | 卫衣        |        89.90 |   89.90 |       0.00 |
|  4 | 女装/女士精品   | 牛仔裤      |       399.90 |   89.90 |     310.00 |
|  6 | 女装/女士精品   | 呢绒外套     |         NULL |  399.90 |       NULL |
|  9 | 户外运动       | 登山杖       |       399.90 |   59.90 |     340.00 |
|  7 | 户外运动       | 自行车       |       399.90 |  399.90 |       0.00 |
| 10 | 户外运动       | 骑行装备     |       499.90 |  399.90 |     100.00 |
| 12 | 户外运动       | 滑板        |       799.90 |  499.90 |     300.00 |
| 11 | 户外运动       | 运动外套     |      1399.90 |  799.90 |     600.00 |
|  8 | 户外运动       | 山地自行车   |         NULL | 1399.90 |       NULL |
+----+---------------+------------+--------------+---------+------------+
12 rows in set (0.00 sec)
  • 首尾函数

1.FIRST_VALUE(expr)函数

FIRST_VALUE(expr)函数返回第一个expr的值。

举例:按照价格排序,查询第1个商品的价格信息。

mysql> SELECT id, category, NAME, price, stock,FIRST_VALUE(price) OVER w AS first_price
    -> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+-------+-------------+
| id | category      | NAME       | price   | stock | first_price |
+----+---------------+------------+---------+-------+-------------+
|  5 | 女装/女士精品   | 百褶裙      |   29.90 |   500 |       29.90 |
|  1 | 女装/女士精品   | T恤        |   39.90 |  1000 |       29.90 |
|  2 | 女装/女士精品   | 连衣裙      |   79.90 |  2500 |       29.90 |
|  3 | 女装/女士精品   | 卫衣       |   89.90 |  1500 |       29.90 |
|  4 | 女装/女士精品   | 牛仔裤      |   89.90 |  3500 |       29.90 |
|  6 | 女装/女士精品   | 呢绒外套    |  399.90 |  1200 |       29.90 |
|  9 | 户外运动       | 登山杖      |   59.90 |  1500 |       59.90 |
|  7 | 户外运动       | 自行车      |  399.90 |  1000 |       59.90 |
| 10 | 户外运动       | 骑行装备    |  399.90 |  3500 |       59.90 |
| 12 | 户外运动       | 滑板       |  499.90 |  1200 |       59.90 |
| 11 | 户外运动       | 运动外套    |  799.90 |   500 |       59.90 |
|  8 | 户外运动       | 山地自行车  | 1399.90 |  2500 |       59.90 |
+----+---------------+------------+---------+-------+-------------+
12 rows in set (0.00 sec)

2.LAST_VALUE(expr)函数

LAST_VALUE(expr)函数返回最后一个expr的值。

举例:按照价格排序,查询最后一个商品的价格信息。

mysql> SELECT id, category, NAME, price, stock,LAST_VALUE(price) OVER w AS last_price
    -> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+-------+------------+
| id | category      | NAME       | price   | stock | last_price |
+----+---------------+------------+---------+-------+------------+
|  5 | 女装/女士精品   | 百褶裙     |   29.90 |   500 |      29.90 |
|  1 | 女装/女士精品   | T恤        |   39.90 |  1000 |      39.90 |
|  2 | 女装/女士精品   | 连衣裙     |   79.90 |  2500 |      79.90 |
|  3 | 女装/女士精品   | 卫衣       |   89.90 |  1500 |      89.90 |
|  4 | 女装/女士精品   | 牛仔裤     |   89.90 |  3500 |      89.90 |
|  6 | 女装/女士精品   | 呢绒外套   |  399.90 |  1200 |     399.90 |
|  9 | 户外运动       | 登山杖     |   59.90 |  1500 |      59.90 |
|  7 | 户外运动       | 自行车     |  399.90 |  1000 |     399.90 |
| 10 | 户外运动       | 骑行装备   |  399.90 |  3500 |     399.90 |
| 12 | 户外运动       | 滑板       |  499.90 |  1200 |     499.90 |
| 11 | 户外运动       | 运动外套   |  799.90 |   500 |     799.90 |
|  8 | 户外运动       | 山地自行车 | 1399.90 |  2500 |    1399.90 |
+----+---------------+------------+---------+-------+------------+
12 rows in set (0.00 sec)
  • 其他函数

1. NTH_VALUE(expr,n)函数

NTH_VALUE(expr,n)函数返回第n个expr的值。

举例:查询goods数据表中排名第2和第3的价格信息。

mysql> SELECT id, category, NAME, price,NTH_VALUE(price,2) OVER w AS second_price,
    -> NTH_VALUE(price,3) OVER w AS third_price
    -> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+--------------+-------------+
| id | category      | NAME       | price   | second_price | third_price |
+----+---------------+------------+---------+--------------+-------------+
|  5 | 女装/女士精品   | 百褶裙     |   29.90 |         NULL |        NULL |
|  1 | 女装/女士精品   | T恤        |   39.90 |        39.90 |        NULL |
|  2 | 女装/女士精品   | 连衣裙     |   79.90 |        39.90 |       79.90 |
|  3 | 女装/女士精品   | 卫衣       |   89.90 |        39.90 |       79.90 |
|  4 | 女装/女士精品   | 牛仔裤     |   89.90 |        39.90 |       79.90 |
|  6 | 女装/女士精品   | 呢绒外套   |  399.90 |        39.90 |       79.90 |
|  9 | 户外运动       | 登山杖     |   59.90 |         NULL |        NULL |
|  7 | 户外运动       | 自行车     |  399.90 |       399.90 |      399.90 |
| 10 | 户外运动       | 骑行装备   |  399.90 |       399.90 |      399.90 |
| 12 | 户外运动       | 滑板       |  499.90 |       399.90 |      399.90 |
| 11 | 户外运动       | 运动外套   |  799.90 |       399.90 |      399.90 |
|  8 | 户外运动       | 山地自行车 | 1399.90 |       399.90 |      399.90 |
+----+---------------+------------+---------+--------------+-------------+
12 rows in set (0.00 sec)

2.NTILE(n)函数

NTILE(n)函数将分区中的有序数据分为n个桶,记录桶编号。

举例:将goods表中的商品按照价格分为3组。

mysql> SELECT NTILE(3) OVER w AS nt,id, category, NAME, price
    -> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+----+---------------+------------+---------+
| nt | id | category      | NAME       | price   |
+----+----+---------------+------------+---------+
|  1 |  5 | 女装/女士精品 | 百褶裙     |   29.90 |
|  1 |  1 | 女装/女士精品 | T恤        |   39.90 |
|  2 |  2 | 女装/女士精品 | 连衣裙     |   79.90 |
|  2 |  3 | 女装/女士精品 | 卫衣       |   89.90 |
|  3 |  4 | 女装/女士精品 | 牛仔裤     |   89.90 |
|  3 |  6 | 女装/女士精品 | 呢绒外套   |  399.90 |
|  1 |  9 | 户外运动      | 登山杖     |   59.90 |
|  1 |  7 | 户外运动      | 自行车     |  399.90 |
|  2 | 10 | 户外运动      | 骑行装备   |  399.90 |
|  2 | 12 | 户外运动      | 滑板       |  499.90 |
|  3 | 11 | 户外运动      | 运动外套   |  799.90 |
|  3 |  8 | 户外运动      | 山地自行车 | 1399.90 |
+----+----+---------------+------------+---------+
12 rows in set (0.00 sec)

小结

窗口函数的特点是可以分组,而且可以在分组内排序。另外,窗口函数不会因为分组而减少原表中的行数,这对我们在原表数据的基础上进行统计和排序非常有用。


共用表表达式

公用表表达式(或通用表表达式)简称为CTE(Common Table Expressions)。CTE是一个命名的临时结果集,作用范围是当前语句。CTE可以理解成一个可以复用的子查询,当然跟子查询还是有点区别的,CTE可以引用其他CTE,但子查询不能引用其他子查询。所以,可以考虑代替子查询。

依据语法结构和执行方式的不同,公用表表达式分为普通公用表表达式递归公用表表达式 2 种。

普通通用表表达式

语法

WITH CTE名称 
AS (子查询)
SELECT|DELETE|UPDATE 语句;

举例

#举例:查询员工所在的部门的详细信息。
#子查询
SELECT * FROM departments
WHERE department_id IN (
    					SELECT DISTINCT department_id 
    					FROM employees
						);
#共用表表达式			
WITH cte
AS (SELECT DISTINCT department_id FROM employees)
SELECT * FROM departments d
JOIN cte c ON d.department_id=c.department_id;

递归通用表

递归公用表表达式也是一种公用表表达式,只不过,除了普通公用表表达式的特点以外,它还有自己的特点,就是可以调用自己。它的语法结构是:

WITH RECURSIVE
CTE名称 AS (子查询)
SELECT|DELETE|UPDATE 语句;

举例

#如果a是b的管理者,那么,我们可以把b叫做a的下属,如果同时b又是c的管理者,那么c就是b的下属,是a的下下属。
#找出所有具有下下属身份的人员信息。
WITH RECURSIVE cte 
AS 
	(
	SELECT employee_id,last_name,manager_id,1 AS n 
    	FROM employees WHERE employee_id = 100 -- 种子查询,找到第一代领导
	UNION ALL
	SELECT a.employee_id,a.last_name,a.manager_id,n+1 
    	FROM employees AS a JOIN cte
	ON (a.manager_id = cte.employee_id) -- 递归查询,找出以递归公用表表达式的人为领导的人
	)
SELECT employee_id,last_name FROM cte WHERE n >= 3; 

课后练习

#3. 分别使用RANK()、DENSE_RANK() 和 ROW_NUMBER()函数对学生成绩降序排列情况进行显示
#方式1:
SELECT 
ROW_NUMBER() OVER (ORDER BY points DESC) AS "排序1",
RANK() OVER (ORDER BY points DESC) AS "排序2",
DENSE_RANK() OVER (ORDER BY points DESC) AS "排序3",
student,points
FROM students;
#方式2:
SELECT 
ROW_NUMBER() OVER w AS "排序1",
RANK() OVER w AS "排序2",
DENSE_RANK() OVER w AS "排序3",
student,points
FROM students WINDOW w AS (ORDER BY points DESC);
posted @ 2022-03-19 23:41  Boerk  阅读(145)  评论(0)    收藏  举报