论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》

论文信息

论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination
论文作者:Yizhen Zheng, Shirui Pan, Vincent Cs Lee, Yu Zheng, Philip S. Yu
论文来源:2022,NeurIPS
论文地址:download 
论文代码:download 

1 Introduction

  GCL 需要大量的 Epoch 在数据集上训练,本文的启发来自 GCL 的代表性工作 DGI 和 MVGRL,因为 Sigmoid 函数存在的缺陷,因此,本文提出  Group Discrimination (GD) ,并基于此提出本文的模型 Graph Group Discrimination (GGD)。

  Graph ContrastiveLearning 和 Group Discrimination 的区别:

  

  • GD directly discriminates a group of positive nodes from a group of negative nodes.
  • GCL maximise the mutual information (MI) between an anchor node and its positive counterparts, sharing similar semantic information while doing the opposite for negative counterparts.

  贡献:

  • 1) We re-examine existing GCL approaches (e.g., DGI and MVGRL), and we introduce a novel and efficient self-supervised GRL paradigm, namely, Group Discrimination (GD).
  • 2) Based on GD, we propose a new self-supervised GRL model, GGD, which is fast in training and convergence, and possess high scalability.
  • 3) We conduct extensive experiments on eight datasets, including an extremely large dataset, ogbn-papers100M with billion edges.

2 Rethinking Representative GCL Methods

  本节以经典的 DGI 、MVGRL 为例子,说明了互信息最大化并不是对比学习的贡献因素,而是一个新的范式,群体歧视(group discrimination)。

2.1 Rethinking GCL Methods

  回顾一下 DGI :

  

  代码:

class DGI(nn.Module):
    def __init__(self, g, in_feats, n_hidden, n_layers, activation, dropout):
        super(DGI, self).__init__()
        self.encoder = Encoder(g, in_feats, n_hidden, n_layers, activation, dropout)
        self.discriminator = Discriminator(n_hidden)
        self.loss = nn.BCEWithLogitsLoss()

    def forward(self, features):
        positive = self.encoder(features, corrupt=False)
        negative = self.encoder(features, corrupt=True)
        summary = torch.sigmoid(positive.mean(dim=0))
        positive = self.discriminator(positive, summary)
        negative = self.discriminator(negative, summary)
        l1 = self.loss(positive, torch.ones_like(positive))
        l2 = self.loss(negative, torch.zeros_like(negative))
        return l1 + l2
View Code

  本文研究 DGI 结论:一个 Sigmoid 函数不适用于权重被 Xavier 初始化的 GNN 生成的 summary vector,且 summary vector  中的元素非常接近于相同的值。

  接着尝试将 Summary vector 中的数值变换成不同的常量 (from 0 to 1):

  

  结论:

    • 将 summary vector 中的数值变成 0,求解相似度时导致所有的 score 变成 0,也就是 postive 项的损失函数变成 负无穷,无法优化;
    • summary vector 设置其他值,导致 数值不稳定;

  DGI 的简化:

  ① 将 summary vector 设置为 单位向量(缩放对损失不影响);

  ② 去掉 Discriminator (Bilinear​ :先做线性变换,再求内积相似度)的权重向量;【双线性层的 $W$ 其实就是一个线性变换层】

    $\begin{aligned}\mathcal{L}_{D G I} &=\frac{1}{2 N}\left(\sum\limits _{i=1}^{N} \log \mathcal{D}\left(\mathbf{h}_{i}, \mathbf{s}\right)+\log \left(1-\mathcal{D}\left(\tilde{\mathbf{h}}_{i}, \mathbf{s}\right)\right)\right) \\&\left.=\frac{1}{2 N}\left(\sum\limits_{i=1}^{N} \log \left(\mathbf{h}_{i} \cdot \mathbf{s}\right)+\log \left(1-\tilde{\mathbf{h}}_{i} \cdot \mathbf{s}\right)\right)\right) \\&=\frac{1}{2 N}\left(\sum\limits_{i=1}^{N} \log \left(\operatorname{sum}\left(\mathbf{h}_{i}\right)\right)+\log \left(1-\operatorname{sum}\left(\tilde{\mathbf{h}}_{i}\right)\right)\right)\end{aligned} \quad\quad\quad(1)$

  Bilinear :

    $\mathcal{D}\left(\mathbf{h}_{i}, \mathbf{s}\right)=\sigma_{s i g}\left(\mathbf{h}_{i} \cdot \mathbf{W} \cdot \mathbf{s}\right)\quad\quad\quad(2)$

  实验:替换 $\text{Eq.1}$ 中的 aggregation function ,即 sum 函数

  

  替换形式为:

    $\mathcal{L}_{B C E}=-\frac{1}{2 N}\left(\sum\limits _{i=1}^{2 N} y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right)\quad\quad\quad(3)$

  其中,$\hat{y}_{i}=\operatorname{agg}\left(\mathbf{h}_{i}\right)$ ,$y_{i} \in \mathbb{R}^{1 \times 1}$ ,$\hat{y}_{i} \in \mathbb{R}^{1 \times 1}$。论文中阐述 $y_{i}$ 和 $\hat{y}_{i}$ 分别代表 node $i$ 是否是 postive sample ,及其预测输出。Q :当 aggregation function 采用 $\text{mean}$ 的时候,对于 postive  sample $i$ ,$\hat{y}_{i}$ 值会趋于 $1$ 么?

  DGI 真正所做的是区分正确拓扑生成的一组节点和损坏拓扑生成的节点,如 Figure 1 所示。可以这么理解,DGI 是使用一个固定的向量 $s$ 去区分两组节点嵌入矩阵(postive and negative)。

  为解决上述 GD 的问题,本文将考虑使用 $\text{Eq.3}$ 去替换 DGI 中的损失函数。替换的好处:节省显存和加快计算速度,对于精度没啥改变,说的天花乱坠。

  

  Note:方差大的稍微大一点的 method ,就是容易被诋毁。

  Group Discrimination 定义:GRL method,将不同组别的节点划分给不同的组,对于 postive pair 和 negative pair 分别划分到 "1" 组 和 "0" 组。

3 Methodology 

  整体框架:

  

  组成部分

    • Siamese Network :模仿 MVGRL 的架构;
    • Data Augmentation :提供相似意义信息,带来的是时间成本;【dropout edge、feature mask】
    • Loss function : $\text{Eq.3}$;
  模型推断:

  首先:固定 GNN encoder、MLP predict 的参数,获得初步的节点表示 $\mathbf{H}_{\theta}$;

  其次:MVGRL 多视图对比工作给本文深刻的启发,所以考虑引入全局信息 :$ \mathbf{H}_{\theta}^{\text {global }}=\mathbf{A}^{n} \mathbf{H}_{\theta}$;

  最后:得到局部表示和全局表示的聚合 $\mathbf{H}=\mathbf{H}_{\theta}^{\text {global }}+\mathbf{H}_{\theta}$ ;

4 Experiments

4.1 Datasets

  

4.2 Result

节点分类

  

训练时间 和 内存消耗

  

  

4.3 Evaluating on Large-scale datasets

  

  

  

  

 

5 Future Work

   For example, can we extend the current binary Group Discrimination scheme (i.e., classifying nodes generated with different topology) to discrimination among multiple groups?

  

posted @ 2022-10-19 14:09  多发Paper哈  阅读(794)  评论(0编辑  收藏  举报
Live2D