pytorch 中layernorm 的使用
https://zhuanlan.zhihu.com/p/288300334
import  torch
import torch.nn as nn
import numpy as np
a = torch.tensor([[[1.0,2.0,3.0],
                 [4.0,5.0,6.0]],
                [[1.0,2.0,3.0],
                 [4.0,5.0,6.0]]])
print(a)
print(a.shape)
ln = torch.nn.LayerNorm([2,3],elementwise_affine=False)
ln_out = ln(a)
print(ln_out)
mean = np.mean(a.numpy(), axis=(1,2))
var = np.var(a.numpy(), axis=(1,2))
div = np.sqrt(var+1e-05)
ln_out = (a.numpy()-mean[:,None,None])/div[:,None,None]
print(ln_out)
a = torch.randn((2,5))
print(a)
print(a.shape)
ln = torch.nn.LayerNorm([5],elementwise_affine=False)
ln_out = ln(a)
print(ln_out)
mean = np.mean(a.numpy(), axis=(1))
var = np.var(a.numpy(), axis=(1))
div = np.sqrt(var+1e-05)
ln_out = (a.numpy()-mean[:,None,None])/div[:,None,None]
print(ln_out)
因上求缘,果上努力~~~~ 作者:别关注我了,私信我吧,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/16367624.html

 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号