神经网络训练模型的两种写法

Example1:

for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

Example2:

for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

 

 

 

参考:pytorch API

posted @ 2021-10-20 17:36  别关注我了,私信我吧  阅读(132)  评论(0)    收藏  举报
Live2D