实对称矩阵

  实对称矩阵:如果有 $n$ 阶矩阵 $A$ , 其矩阵的元素都为实数, 且矩阵 $A$ 的转置等于其本身, 即

    $A=A^{T}$

  则称 A 为实对称矩阵。
  它有一些性质:

  1. 实对称矩阵属于不同特征值的特征向量相互正交(必线性无关)。
  2. 实对称矩阵属于 $ n_{i}$ 重特征值的线性无关的特征向量恰有 $ n_{i}$ 个。
  3. $n$ 阶实对称矩阵恰有 $ n$ 个线性无关的特征向量, 进而有 $ n$ 个单位正交的特征向量。
posted @ 2021-10-02 16:52  加微信X466550探讨  阅读(1443)  评论(0编辑  收藏  举报