HDU——1003Max Sum(子序列最大和)
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 197869 Accepted Submission(s): 46229
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
对于一个数,决策只有两种,要么让他跟前面的并在一起,要么前面的扔掉,从这个数开始取。
用dp结构体来表示,比较直观
若把前面的一段与A[i]合并,则当前点的l为dp[i-1].l保持不变,r=dp[i-1].r+1,因为此时A[i]算了进去;
若直接从A[i],那么令dp[i].l=dp[i].r=i即可,dp[i].val=A[i]。
最后找到一个最大的dp[i].val即可
代码:
#include <stdio.h>
const int N = 100010;
struct info
{
int val;
int l, r;
};
info dp[N];
int arr[N];
int main(void)
{
int tcase, n, i;
scanf("%d", &tcase);
for (int q = 1; q <= tcase; ++q)
{
scanf("%d", &n);
for (i = 1; i <= n; ++i)
scanf("%d", arr + i);
dp[1].val = arr[1];
dp[1].l = 1;
dp[1].r = 1;
for (i = 2; i <= n; ++i)
{
int a = dp[i - 1].val + arr[i];
int b = arr[i];
if (a >= b)
{
dp[i].val = a;
dp[i].l = dp[i - 1].l;
dp[i].r = dp[i - 1].r + 1;
}
else
{
dp[i].l = dp[i].r = i;
dp[i].val = arr[i];
}
}
int indx = 1;
for (i = 1; i <= n; ++i)
if (dp[i].val > dp[indx].val)
indx = i;
printf("Case %d:\n%d %d %d\n%s", q, dp[indx].val, dp[indx].l, dp[indx].r, q != tcase ? "\n" : "");
}
return 0;
}

浙公网安备 33010602011771号