反演和容斥

反演本质

反演形如 \(f(n)=\sum\limits_{i=0}^na_ig(i)\iff g(n)=\sum\limits_{i=0}^nb_if(i)\)。实质是:两个函数(数列)之间的双向(求和)关系

如果定义一个关系矩阵 \(\mathcal A\),满足 \(f(n)=\sum\limits_{i=0}^ng(i)\mathcal A_{i,n}\),考虑其实质是向量 \([f_0,f_1,\dots,f_n]=[g_0,g_1,\dots,g_n]\times\mathcal A\),即 \(F=G\times\mathcal A\)。此时不难逆向的推出 \(G=F\times\mathcal A^{-1}\)

于是我们就得到了反演的通项:若 \(A\times B=I\),则 \(f(n)=\sum\limits_{i=0}^ng(i)A_{i,n}\iff g(n)=\sum\limits_{i=0}^nf(i)B_{i,n}\)

集合反演

\[f(S)=\sum\limits_{T\subseteq S}g(T)\iff g(S)=\sum\limits_{T\subseteq S}(-1)^{|S|-|T|}f(T) \]

\[f(S)=\sum\limits_{T\supseteq S}g(T)\iff g(S)=\sum\limits_{T\supseteq S}(-1)^{|T|-|S|}f(T) \]

二项式反演

\[\begin{align*} f(n)=\sum\limits_{i=0}^n\dbinom{n}{i}g(i) &\iff g(n)=\sum\limits_{i=0}^n(-1)^{n-i}\dbinom{n}{i}f(i)\\ f(n)=\sum\limits_{i=0}^n(-1)^i\dbinom{n}{i}g(i) &\iff g(n)=\sum\limits_{i=0}^n(-1)^i\dbinom{n}{i}f(i)\\ f(n)=\sum\limits_{i\ge n}\dbinom{i}{n}g(i) &\iff g(n)=\sum\limits_{i\ge n}(-1)^{i-n}\dbinom{i}{n}f(i)\\ f(n)=\sum\limits_{i\ge n}(-1)^i\dbinom{i}{n}g(i) &\iff g(n)=\sum\limits_{i\ge n}(-1)^i\dbinom{i}{n}f(i)\\ \end{align*}\]

莫比乌斯反演

\[f(n)=\sum\limits_{d|n}g(d)\iff g(n)=\sum\limits_{d|n}\mu(d)f(\frac{n}{d}) \]

\[f(n)=\sum\limits_{n|d}g(d)\iff g(n)=\sum\limits_{n|d}\mu(d)f(\frac{d}{n}) \]

其中 \(\mu(n)=\begin{cases}0&\exists \ p\in\mathbb{P},p^2 \mid n\\(-1)^m&\text{otherwise}\end{cases}\)\(m\)\(n\) 的不同质因子数。

Min-Max 容斥

\[\max\limits_kS=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\dbinom{|T|-k}{k-1}\min\limits_k T \]

\[\min\limits_kS=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\dbinom{|T|-k}{k-1}\max\limits_k T \]

\[E(\max\limits_kS)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\dbinom{|T|-k}{k-1}E(\min\limits_k T) \]

\[E(\min\limits_kS)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\dbinom{|T|-k}{k-1}E(\max\limits_k T) \]

posted @ 2023-10-10 19:38  JWRuixi  阅读(37)  评论(0)    收藏  举报