线程池、进程池

进程池

import multiprocessing

def func():
  pass

if __name__ == "__main__":

  po = multiprocessing.Pool(10)
  po.apply_async(func)调用func
  po.close() # 关闭进程池
  po.join() # 等待(相当于在这个地方阻塞)

from concurrent.futures import ThreadPoolExecutor
import time

# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times

executor = ThreadPoolExecutor(max_workers=2)
# 通过submit函数提交执行的函数到线程池中,submit函数立即返回,不阻塞
task1 = executor.submit(get_html, (3))
task2 = executor.submit(get_html, (2))
# done方法用于判定某个任务是否完成
print(task1.done())
# cancel方法用于取消某个任务,该任务没有放入线程池中才能取消成功
print(task2.cancel())
time.sleep(4)
print(task1.done())
# result方法可以获取task的执行结果
print(task1.result())

# 执行结果
# False  # 表明task1未执行完成
# False  # 表明task2取消失败,因为已经放入了线程池中
# get page 2s finished
# get page 3s finished
# True  # 由于在get page 3s finished之后才打印,所以此时task1必然完成了
# 3     # 得到task1的任务返回值
线程池
  1. ThreadPoolExecutor构造实例的时候,传入max_workers参数来设置线程池中最多能同时运行的线程数目。
  2. 使用submit函数来提交线程需要执行的任务(函数名和参数)到线程池中,并返回该任务的句柄(类似于文件、画图),注意submit()不是阻塞的,而是立即返回。
  3. 通过submit函数返回的任务句柄,能够使用done()方法判断该任务是否结束。上面的例子可以看出,由于任务有2s的延时,在task1提交后立刻判断,task1还未完成,而在延时4s之后判断,task1就完成了。
  4. 使用cancel()方法可以取消提交的任务,如果任务已经在线程池中运行了,就取消不了。这个例子中,线程池的大小设置为2,任务已经在运行了,所以取消失败。如果改变线程池的大小为1,那么先提交的是task1task2还在排队等候,这是时候就可以成功取消。
  5. 使用result()方法可以获取任务的返回值。查看内部代码,发现这个方法是阻塞的。


作者:StormZhu
链接:https://www.jianshu.com/p/b9b3d66aa0be
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
posted @ 2019-06-02 19:28  bin-y  阅读(84)  评论(0)    收藏  举报