代码这样写更优雅(Python版)

转载于:http://mp.weixin.qq.com/s/p-2ifLQ1iNwwqqCGL0A4Eg

Python 这门语言最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。但有时候我们写代码,特别是 Python 初学者,往往还是按照其它语言的思维习惯来写,那样的写法不仅运行速度慢,代码读起来也费尽,给人一种拖泥带水的感觉,过段时间连自己也读不懂。

《计算机程序的构造和解释》的作者哈尔·阿伯尔森曾这样说:“Programs must be written for people to read, and only incidentally for machines to execute.”

要写出 Pythonic(优雅的、地道的、整洁的)代码,还要平时多观察那些大牛代码,Github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,笔者列举一些常见的 Pythonic 写法,希望能给你带来一点启迪。

1、变量交换

大部分编程语言中交换两个变量的值时,不得不引入一个临时变量:

>>> a = 1
>>> b = 2
>>> tmp = a
>>> a = b
>>> b = tmp
pythonic
>>> a, b = b, a

2、循环遍历区间元素

for i in [0, 1, 2, 3, 4, 5]:
    print i2

# 或者

for i in range(6):
   print i2

xrange 返回的是生成器对象,生成器比列表更加节省内存,不过需要注意的是 xrange 是 python2 中的写法,python3 只有 range 方法,特点和 xrange 是一样的。

3、带有索引位置的集合遍历

遍历集合时如果需要使用到集合的索引位置时,直接对集合迭代是没有索引信息的,普通的方式使用:

colors = ['red', 'green', 'blue', 'yellow']

for i in range(len(colors)):
    print i, '--->', colors[i]

pythonic:

for i, color in enumerate(colors):
    print i, '--->', color

4、字符串连接

字符串连接时,普通的方式可以用 + 操作

names = ['raymond', 'rachel', 'matthew', 'roger',
'betty', 'melissa', 'judith', 'charlie']

s = names[0]
for name in names[1:]:
    s += ', ' + name
    print s

pythonic

print ', '.join(names)

join 是一种更加高效的字符串连接方式,使用 + 操作时,每执行一次+操作就会导致在内存中生成一个新的字符串对象,遍历8次有8个字符串生成,造成无谓的内存浪费。而用 join 方法整个过程只会产生一个字符串对象。

5、打开/关闭文件

执行文件操作时,最后一定不能忘记的操作是关闭文件,即使报错了也要 close。普通的方式是在 finnally 块中显示的调用 close 方法。

f = open('data.txt')
try:
    data = f.read()
finally:
    f.close()

pythonic

with open('data.txt') as f:
    data = f.read()

使用 with 语句,系统会在执行完文件操作后自动关闭文件对象。

6、列表推导式

能够用一行代码简明扼要地解决问题时,绝不要用两行,比如

result = []
for i in range(10):
   s = i 2
   result.append(s)

pythonic

[i2 for i in xrange(10)]

与之类似的还有生成器表达式、字典推导式,都是很 pythonic 的写法。

7、善用装饰器

装饰器可以把与业务逻辑无关的代码抽离出来,让代码保持干净清爽,而且装饰器还能被多个地方重复利用。比如一个爬虫网页的函数,如果该 URL 曾经被爬过就直接从缓存中获取,否则爬下来之后加入到缓存,防止后续重复爬取。

def web_lookup(url, saved={}):
if url in saved:
     return saved[url]
     page = urllib.urlopen(url).read()
     saved[url] = page
     return page

pythonic

import urllib #py2
#import urllib.request as urllib # py3

def cache(func):
    saved = {}

def wrapper(url):
    if url in saved:
       return saved[url]
    else:
       page = func(url)
       saved[url] = page
   return page
return wrapper

@cache
def web_lookup(url):
    return urllib.urlopen(url).read()

用装饰器写代码表面上感觉代码量更多,但是它把缓存相关的逻辑抽离出来了,可以给更多的函数调用,这样总的代码量就会少很多,而且业务方法看起来简洁了。

8、合理使用列表

列表对象(list)是一个查询效率高于更新操作的数据结构,比如删除一个元素和插入一个元素时执行效率就非常低,因为还要对剩下的元素进行移动

names = ['raymond', 'rachel', 'matthew', 'roger',
'betty', 'melissa', 'judith', 'charlie']
names.pop(0)
names.insert(0, 'mark')

pythonic:

from collections import deque
names = deque(['raymond', 'rachel', 'matthew', 'roger',
'betty', 'melissa', 'judith', 'charlie'])
names.popleft()
names.appendleft('mark')

deque 是一个双向队列的数据结构,删除元素和插入元素会很快

9、序列解包

p = 'vttalk', 'female', 30, 'python@qq.com'

name = p[0]
gender = p[1]
age = p[2]
email = p[3]

pythonic

name, gender, age, email = p

10、遍历字典的 key 和 value

方法一速度没那么快,因为每次迭代的时候还要重新进行hash查找 key 对应的 value。

方法二遇到字典非常大的时候,会导致内存的消耗增加一倍以上

# 方法一

for k in d:
print k, '--->', d[k]

# 方法二

for k, v in d.items():
print k, '--->', v

pythonic

for k, v in d.iteritems():
print k, '--->', v

iteritems 返回迭代器对象,可节省更多的内存,不过在 python3 中没有该方法了,只有 items 方法,等值于 iteritems。

11、链式比较操作

age = 18
if age > 18 and x < 60:
    print("yong man")

pythonic

if 18 < age < 60:
    print("yong man")

理解了链式比较操作,那么你应该知道为什么下面这行代码输出的结果是 False。

>>> False == False == True 
False

12、if/else 三目运算

if gender == 'male':
    text = ''
else:
    text = ''

pythonic

text = '' if gender == 'male' else ''

在类C的语言中都支持三目运算 b?x:y,Python之禅有这样一句话:

“There should be one— and preferably only one —obvious way to do it. ”。

能够用 if/else 清晰表达逻辑时,就没必要再额外新增一种方式来实现。

13、真值判断

检查某个对象是否为真值时,还显示地与 True 和 False 做比较就显得多此一举,不专业

if attr == True:
    do_something()

if len(values) != 0: # 判断列表是否为空
    do_something()

pythonic

if attr:
    do_something()

if values:
    do_something()

真假值对照表:

14、for/else语句
for else 是 Python 中特有的语法格式,else 中的代码在 for 循环遍历完所有元素之后执行。

flagfound = False
for i in mylist:
    if i == theflag:
    flagfound = True
    break
    process(i)

if not flagfound:
    raise ValueError("List argument missing terminal flag.")

pythonic

for i in mylist:
    if i == theflag:
        break
        process(i)

else: raise ValueError("List argument missing terminal flag.")

15、字符串格式化

s1 = "foofish.net"
s2 = "vttalk"
s3 = "welcome to %s and following %s" % (s1, s2)

pythonic

s3 = "welcome to {blog} and following {wechat}".format(blog="foofish.net", wechat="vttalk")

很难说用 format 比用 %s 的代码量少,但是 format 更易于理解。

“Explicit is better than implicit —- Zen of Python”

16、列表切片

获取列表中的部分元素最先想到的就是用 for 循环根据条件提取元素,这也是其它语言中惯用的手段,而在 Python 中还有强大的切片功能。

items = range(10)

# 奇数
odd_items = []
for i in items:
    if i % 2 != 0:
        odd_items.append(i)

# 拷贝
copy_items = []
for i in items:
    copy_items.append(i)

pythonic

# 第1到第4个元素的范围区间
sub_items = items[1:4]
# 奇数
odd_items = items[1::2]
#拷贝
copy_items = items[::] 或者 items[:]
列表元素的下标不仅可以用正数表示,还是用负数表示,最后一个元素的位置是 -1,从右往左,依次递减。
--------------------------
| P | y | t | h | o | n |
--------------------------
  0   1   2   3   4   5 
  -6  -5 -4  -3  -2  -1
--------------------------

17、善用生成器

def fib(n):
a, b = 0, 1
result = []
while b < n:
    result.append(b)
    a, b = b, a+b
return result

pythonic

def fib(n):
a, b = 0, 1
while a < n:
    yield a
    a, b = b, a + b

上面是用生成器生成费波那契数列。生成器的好处就是无需一次性把所有元素加载到内存,只有迭代获取元素时才返回该元素,而列表是预先一次性把全部元素加载到了内存。此外用 yield 代码看起来更清晰。

18、获取字典元素

d = {'name': 'foo'}
if d.has_key('name'):
    print(d['name'])
else:
    print('unkonw')
pythonic
d.get("name", "unknow")

19、预设字典默认值

通过 key 分组的时候,不得不每次检查 key 是否已经存在于字典中。

data = [('foo', 10), ('bar', 20), ('foo', 39), ('bar', 49)]
groups = {}
for (key, value) in data:
     if key in groups:
         groups[key].append(value)
    else:
         groups[key] = [value]

pythonic

# 第一种方式

groups = {}
for (key, value) in data:
    groups.setdefault(key, []).append(value)

# 第二种方式

from collections import defaultdict
groups
= defaultdict(list) for (key, value) in data: groups[key].append(value)

 

20、字典推导式

在python2.7之前,构建字典对象一般使用下面这种方式,可读性非常差

numbers = [1,2,3]
my_dict = dict([(number,number*2) for number in numbers])
print(my_dict) # {1: 2, 2: 4, 3: 6}

pythonic

numbers = [1, 2, 3]
my_dict = {number: number * 2 for number in numbers}
print(my_dict) # {1: 2, 2: 4, 3: 6}

# 还可以指定过滤条件

my_dict = {number: number * 2 for number in numbers if number > 1}
print(my_dict) # {2: 4, 3: 6}

字典推导式是 python2.7 新增的特性,可读性增强了很多,类似的还是列表推导式和集合推导式。

posted @ 2018-03-11 19:49  BGPY  阅读(169)  评论(0)    收藏  举报