2020.06.09 手写数字识别-小数据集

1.手写数字数据集

  • from sklearn.datasets import load_digits
  • digits = load_digits()
from sklearn.datasets import load_digits
digits = load_digits()

#查看数据集的数字图片
import matplotlib.pyplot as plt
plt.imshow(digits.images[5])
plt.show()

查看数据集的一张数字:

 

 

2.图片数据预处理

  • x:归一化MinMaxScaler()
  • y:独热编码OneHotEncoder()或to_categorical
  • 训练集测试集划分
  • 张量结构

 

#对X进行归一化
from sklearn.preprocessing import MinMaxScaler
import numpy as np
X_data = digits.data.astype(np.float32)
scaler = MinMaxScaler()
X_data = scaler.fit_transform(X_data)
scaler.scale_
scaler.min_
print("查看归一化后的X数据:\n",X_data)
#转换为图片数据的维度
X = X_data.reshape(-1,8,8,1)



#对Y进行 one-hot处理 独热编码
from sklearn.preprocessing import OneHotEncoder
Y_data = digits.target.reshape(-1,1)
Y = OneHotEncoder().fit_transform(Y_data).todense()
print("One-hot处理:\n",Y)

#划分训练集和测试集
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
print("查看划分的数据集的维度:\n",X_train.shape,X_test.shape,Y_train.shape,Y_test.shape)

 

查看归一化,独热编码和划分测试集的维度:

 

 

3.设计卷积神经网络结构

  • 绘制模型结构图,并说明设计依据。
  • 根据经典模型绘制
  •  

     

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import  Dense,Dropout,Flatten,Conv2D,MaxPool2D
#设计卷积神经网络结构
model = Sequential()
ks = (3, 3)  # 卷积核的大小
input_shape = X_train.shape[1:]
# 第一层卷积,指定input_shape,其他层的数据的input_shape框架会自动推导,padding指定扫描方式
model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
# 随机丢链接,防止过拟合
model.add(Dropout(0.25))
# 二层卷积
model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
# 池化层
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 三层卷积
model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
# 四层卷积
model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
# 池化层3
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 平坦层
model.add(Flatten())
# 全连接层
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
# 激活函数softmax
model.add(Dense(10, activation='softmax'))
model.summary()

 

模型结果:

 

 

4.模型训练

#对模型进行训练
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
train_history = model.fit(x=X_train, y=Y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
score = model.evaluate(X_test,Y_test)
print('查看损失率和精确度:', score)

 

 

可视化结果: 

  

5.模型评价

  • model.evaluate()
  • 交叉表与交叉矩阵
  • pandas.crosstab
  • seaborn.heatmap
# 模型评价
import seaborn as sns
import pandas as pd
score = model.evaluate(X_test, Y_test)
# 预测值
y_pred = model.predict_classes(X_test)
print('预测值与真实值对比:', y_pred[:10],"\n",Y_test[:10])
# 交叉表与交叉矩阵
y_test1 = np.argmax(Y_test, axis=1).reshape(-1)
y_true = np.array(y_test1)[0]
# 交叉表查看预测数据与原数据对比
pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
# 交叉矩阵
y_test1 = y_test1.tolist()[0]
a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
df = pd.DataFrame(a)
sns.heatmap(df, annot=True, cmap="YlGn", linewidths=0.2, linecolor='G')
plt.show()

 

 可视化结果:

 

posted @ 2020-06-09 19:55  Azan1999  阅读(279)  评论(0编辑  收藏  举报