CMC蒲和平4.1
例7
设 \(z = f(x, y)\) 满足 \(\frac{\partial z}{\partial x} = -\sin y + \frac{1}{1 - xy}\),且有 \(f(1, y) = \sin y\),讨论 \(f(x, y)\) 在点 \((1, 1)\) 处的连续性。
solution
两边对 \(x\) 求积分,可以得到:\(z = -x\sin y - \frac{1}{y}\ln(1-xy) + \varphi (y)\).
代入 \(f(1, y) = \sin y \Rightarrow \sin y = -\sin y - \frac{1}{y}\ln (1 - y) + \varphi(y) \Rightarrow \varphi(y) = 2\sin y + \frac{1}{y}\ln(1-y)\).
所以有 \(f(x, y) = (2-x)\sin y + \frac{1}{y}\ln(\frac{1-y}{1-xy})\).
取 \(x = y ^ k\),\(\lim\limits_{x\rightarrow 1, y\rightarrow 1} f(x, y) = \sin 1 + \ln \left(\frac{1 - y}{1 - y ^ {k + 1}}\right)\). 可以发先 \(k = 1\) 是值为 \(\sin 1 - \ln 2\),\(k = 2\) 时为 \(\sin 1 - \ln 3\),所以函数在 \((1, 1)\) 处不连续。
习题3
求极限:
\((2)\) \(\lim\limits_{x\rightarrow 0, y\rightarrow 0} \ln(1 + xy) ^ {\frac{1}{x + y}}\);
\((3)\) \(\lim\limits_{x\rightarrow +\infty, y\rightarrow +\infty} \left(\frac{xy}{x ^ 2 + y ^ 2}\right) ^ {x ^ 2}\sin(xy)\);
\((4)\) \(\lim\limits_{x\rightarrow 0, y\rightarrow 0} (|x|+|y|) ^ {|xy|}\);
\((5)\) \(\lim\limits_{x\rightarrow 0, y\rightarrow 0} \frac{\sqrt{xy + 1} - 1}{(x + y)\ln|xy|}\).
solution
- (2)
\(I = \lim\limits_{x\rightarrow 0, y\rightarrow 0} \frac{xy}{x + y} = \lim\limits_{\rho \rightarrow 0 ^ +} \frac{\rho\sin \phi \cos \phi}{\sin \phi + \cos \phi}\),分母为 \(0\) 时极限不存在,所以不存在。
- (3)
\(I = \lim\limits_{\rho \rightarrow 0 ^ +} \left(\\cos \theta\sin\theta\right) ^ {\rho^2\cos ^2 \theta}\cdot \sin (\rho^2\cos\theta\sin\theta)\). 观察一下,\(\sin \theta\cos\theta = 0\) 时,式子趋向 \(0\),其他情况也是 \(0\),所以答案是 \(0\).
- (4)
\(I = \lim\limits_{x\rightarrow 0, y\rightarrow 0} \exp\{\ln(|x|+|y|)|xy|\} \le \lim\limits_{x\rightarrow 0, y\rightarrow 0} \exp\{\ln(|x|+|y|)\frac{(|x|+|y|)^2}{2}\} = 1\)
- (5)
\(I = \lim\limits_{x\rightarrow 0, y\rightarrow 0} \frac{\frac{1}{2}xy}{(x + y)\ln |xy|}\). 取 \(y = kx\) 有 \(I = \lim\limits_{x\rightarrow 0, y\rightarrow 0} \frac{kx^2}{2(k + 1)x\ln (kx^2)} = \lim\limits_{x\rightarrow 0} \frac{k}{2(k + 1)\ln (kx^2)/x}\) 发散,不存在。
习题7
设 \(f(x, y)\) 在 \(D = \{(x, y) \mid x ^ 2 + y ^ 2\le 1\}\) 上连续,且 \(f(1, 0) = 1, f(0, 1) = -1\). 证明至少存在两个不同的点 \((\xi_1, \eta_1)\) 与 \((\xi_2, \eta_2)\),\((\xi_1, \eta_1) \neq (\xi_2, \eta_2)\),\(\xi_i^2 + \eta_i^2 = 1 ( i = 1, 2)\),使 \(f(\xi_i, \eta_i) = 0(i = 1 ,2)\).
proof
由于 \((\xi_i, \eta_i)\) 在单位圆上,所以可以设 \(G(\alpha) = f(\cos\alpha, \sin\alpha)\),那么有 \(G(0) = -1, G(\frac{\pi}{2}) = 1, G(2\pi) = -1\),根据零点存在定理,即可证明。