CMC8.20小测

Score(73/100)

T4(0/15)

\(\{a_k\},\{b_k\}\) 为正项数列,\(b_{k + 1} - b_k \ge \delta > 0\). 若 \(\sum\limits_{k = 1} ^ {+\infty} a_k\) 收敛,证明:

\[\sum\limits_{k = 1} ^ {+\infty} \dfrac{a_1b_1 + a_2 b_2 + \cdots + a_k b_k}{b_k b_{k + 1}} \]

收敛。

proof

考虑利用条件,有:

\[\sum\limits_{k = 1} ^ {+\infty} \dfrac{a_1b_1 + a_2 b_2 + \cdots + a_k b_k}{b_k b_{k + 1}} \cdot \dfrac{b_{k + 1} - b_k}{b_{k + 1} - b_k} \le \dfrac{1}{\delta} \sum\limits_{k = 1} ^ {+\infty} (a_1b_1 + a_2 b_2 + \cdots + a_kb_k )\left(\frac{1}{b_k} - \frac{1}{b_{k + 1}}\right) \]

考察放缩后 \(\sum\) 内部的前几项:

\[= (a_1 - \frac{a_1b_1}{b_2}) + (a_2 + \frac{a_1b_1}{b_2} - \frac{a_1b_1+a_2b_2}{b_3}) + (a_3 + \frac{a_1b_1 + a_2b_2}{b_3} - \frac{a_1b_1 + a_2b_2 + a_3b_3}{b_4}) +... \]

所以原级数 \(\le\)

\[\frac{1}{\delta}\left(\sum\limits_{k = 1} ^ {+\infty} a_k - \lim_{n\rightarrow \infty} \dfrac{a_1b_1+a_2b_2+\cdots+a_nb_n}{b_{n + 1}}\right) \le \frac{1}{\delta} \sum\limits_{k = 1} ^ {+\infty} a_k \]

可以知道级数收敛。

T5(8/20)

\(\lim\limits_{n\rightarrow \infty} n\int_1^n \frac{1}{1 + x ^ n} \cdot |\cos x| dx\).

wrong solution

将区间拆分为 \([1, 1 + \frac{1}{n}]\)\([1 + \frac{1}{n}, n]\),即 \(\lim\limits_{n\rightarrow \infty} n\int_1^{1 + \frac{1}{n}} \frac{1}{1 + x ^ n} \cdot |\cos x| dx + \lim\limits_{n\rightarrow \infty} n\int_{1 + \frac{1}{n}}^n \frac{1}{1 + x ^ n} \cdot |\cos x| dx\)

错因:可以发现此时第二项积分内部接近 \(1 + \frac{1}{n}\) 时是 \(\dfrac{1}{1 + e}\),该值存在,故第二项极限不为 \(0\)

solution

考虑到 \(n \rightarrow +\infty\) 时,\(\frac{1}{1 + x ^ n} \rightarrow 0\),所以大部分对式子中积分的值有贡献的部分都在 \(1\) 的邻域内,经过考虑后,将区间拆分为 \([1, 1 + \frac{1}{\sqrt n}]\)\([1 + \frac{1}{\sqrt n}, n]\).

\(I = \lim\limits_{n\rightarrow \infty} n\int_1^{1 + \frac{1}{\sqrt n}} \frac{1}{1 + x ^ n} \cdot |\cos x| dx + \lim\limits_{n\rightarrow \infty} n\int_{1 + \frac{1}{\sqrt n}}^n \frac{1}{1 + x ^ n} \cdot |\cos x| dx = I_1 + I_2\)

\(I_1 = \lim\limits_{n\rightarrow \infty} |\cos \xi_1|n\int_1^{1 + \frac{1}{\sqrt n}} \frac{1}{1 + x ^ n}dx = \lim\limits_{n\rightarrow \infty} |\cos \xi_1|n\int_1^{e ^ {\sqrt n}} \frac{\frac{1}{n}t ^{\frac{1}{n} - 1}}{1 + t}dt = |\cos 1|\int_1^{+\infty} \frac{1}{t(1 + t)}dt = |\cos 1|\ln2\)

\(I_2 = \lim\limits_{n\rightarrow \infty} |\cos \xi_2| \frac{1}{1 + \xi_2^n} (n - 1 - \frac{1}{\sqrt n}) \le \lim\limits_{n\rightarrow \infty} \frac{1}{1 + e ^ {\sqrt n}}(n - 1 - \frac{1}{\sqrt n}) = 0\).

所以 \(I = I_1 = |\cos 1|\ln 2\).

T6(20/20)

\(\{a_n\}\) 数列满足 \(a_{n + 1} = \sqrt{\frac{1}{n + 1} + a_n}, a_1 = \sqrt 1\). 求 \(\lim\limits_{n\rightarrow +\infty} a_n\).

my solution

首先猜想答案是 \(1\),但是我不会放缩,直接暴力:

\[|a_{n + 1} - 1| = \left|\sqrt{\frac{1}{n + 1} + a_n} - \sqrt 1\right| = \frac{1}{2\sqrt \xi_n}\left|\frac{1}{n + 1} + a_n - 1\right| \le \frac{1}{2}\left(a_n - 1 + \frac{1}{n + 1}\right) \]

\(\frac{1}{2} < 1\)\(\lim\limits_{n\rightarrow +\infty} \frac{1}{n + 1} = 0\),所以只需用极限理论即可证明:

\(\exist N_1 \in \N^+, n > N_1\) 时,有 \(\forall \epsilon > 0, \frac{1}{n + 1} < \epsilon\).

\(a_{n + 1} - 1 \le \frac{1}{2 ^ {n - N_1}} (a_{N_1} - 1) + \epsilon (\frac{1}{2} + \frac{1}{2 ^ 2} + \cdots + \frac{1}{2 ^ {n - N_1}}) < \epsilon + \frac{1}{2 ^ {n - N_1}} (a_{N_1} - 1)\).

因为 \(\lim\limits_{n\rightarrow +\infty}\frac{1}{2 ^ {n - N_1}} (a_{N_1} - 1) = 0\),所以 \(\exist N_2 > N_1, n > N_2\) 时,有 \(\frac{1}{2 ^ {n - N_1}} (a_{N_1} - 1) < \epsilon\).

所以 \(a_{n + 1} - 1 < 2\epsilon\),所以 \(\lim\limits_{n\rightarrow +\infty} a_n = 1\).

std solution

找规律,\(a_2 = \sqrt{1 + \frac{1}{2}} < 2\)\(a_3 < \sqrt{\frac{1}{3} + 2} < 1 + \frac{2}{3}\),归纳证明 \(a_n < 1 + \frac{2}{n}\).

然后就证明出来了,夹逼准则直接出答案。。。

posted @ 2025-08-21 10:52  AxDea  阅读(8)  评论(0)    收藏  举报