离散微积分积分表
默认 \(n\) 为常数,\(x\) 为自变量。
省略不定求和的 \(\delta x\) 和 \(+C\)。
MMA 缺省源
DD = DifferenceDelta;
FP = FactorialPower;
H = HarmonicNumber;
Binom = Binomial;
幂
(前提条件为 \(n \ne 1\),\(n = 1\) 时平凡)
\[\sum n^x = \dfrac {n^x} {n-1}
\]
\[\Delta \left( n^x \right) = (n-1) n^x
\]
下降幂
(前提条件为 \(n \ne -1\),\(n = -1\) 时见调和数部分)
\[\sum x^{\underline n} = \dfrac {x^{\underline {n+1}}} {n+1}
\]
\[\Delta \left( x^{\underline n} \right) = n x^{\underline{n-1}}
\]
\[\Delta \left( n^{\underline x} \right) = (n-x-1) n^{\underline x}
\]
exp
\[\sum 2^x = 2^x
\]
\[\Delta \left( 2^x \right) = 2^x
\]
二项式系数
\[\sum \binom x n = \binom x {n+1}
\]
\[\Delta \binom x n = \binom x {n-1}
\]
更一般地:
\[\sum \binom {x+m} n = \binom {x+m} {n+1}
\]
\[\Delta \binom {x+m} n = \binom {x+m} {n-1}
\]
注:遇到组合数相关可以尝试 \(\dbinom x n = \dfrac {x^{\underline n}} {n!}\)。
调和数
\[\sum x^{\underline{-1}} = H_x
\]
\[\sum H_x = xH_x - x
\]
\[\sum x H_x = \dfrac {x(x-1)} 2 H_x - \dfrac {x(x-1)} 4
\]
浙公网安备 33010602011771号