AP Calculus Unit 6

Unit 6: Integration and accumulation of change

Approximating areas with Riemann sums

A Riemann sum is an approximation of the area under a curve by dividing it into multiple simple shapes (like rectangles or trapezoids).

对于每个 \([l,r]\) 的长方形,其"高"定义为:

  • 对于 left Riemann sum: \(f(l)\)
  • 对于 right Riemann sum: \(f(r)\)
  • 对于 midpoint Riemann sum: \(f(\frac {l + r} 2)\)
  • 对于 trapezoidal sum: \(\frac {f(l) + f(r)} 2\)

用求和符号写出 \([a,b]\)\(f\) 的 left Riemann sum / right Riemann sum:令 \(\Delta x = \frac {b - a} n\)\(x_i = a + i \Delta x\)

  • left Riemann sum: \(\sum\limits_{i=0}^{n-1} f(x_i) \Delta x\)
  • right Riemann sum: \(\sum\limits_{i=1}^{n} f(x_i) \Delta x\)

Definite integral as the limit of a Riemann sum

不妨用左黎曼和定义定积分:

\[\int_a^b f(x) dx = \lim\limits_{n \rightarrow \infty} \sum\limits_{i=0}^{n-1} f(x_i) \Delta x \]

\(x_i\)\(\Delta x\) 同上文:\(\Delta x = \frac {b - a} n\)\(x_i = a + i \Delta x\)

⚠️这是一个数列极限,有关内容见 Unit 10。

The fundamental theorem of calculus - First part

\(f\)\([c,d]\) 上连续,定义 \(F(x) = \int_c^x f(t) dt\)(其中 \(c \le x \le d\)),则:

\[F'(x) = f(x) \]

通过该定理可知,任何连续函数都有反导数。

Proof

根据导数和定积分定义:

\[F'(x) = \lim\limits_{\Delta x \rightarrow 0} \frac 1 {\Delta x} \int_x^{x + \Delta x} f(t) dt \]

根据 Unit 8 知识点 MVT for integrals,必存在 \(c \in [x, x + \Delta x]\) 使得 \(f(c) = \frac 1 {\Delta x} \int_x^{x + \Delta x} f(t) dt\)\(c\) 可以视作一个关于 \(\Delta x\) 的函数,设 \(C(\Delta x) = c\)

根据夹逼定理,\(x \le C(\Delta x) \le x + \Delta x\),可得 \(\lim\limits_{\Delta x \rightarrow 0} C(\Delta x) = x\)

因此 \(F'(x) = \lim\limits_{\Delta x \rightarrow 0} f(C(\Delta x)) = f(x)\)

Properties of definite integrals

Sum/Difference:

\[\int_a^b f(x) dx + \int_a^b g(x) dx = \int_a^b (f(x) + g(x)) dx \]

Constant multiple:

\[\int_a^b c f(x) dx = c \int_a^b f(x) dx \]

Reverse interval:

\[\int_a^b f(x) dx = - \int_b^a f(x) dx \]

Adding intervals:

\[\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx \]

The fundamental theorem of calculus - Second part

\(f\)\([c,d]\) 上连续,定义 \(F(x) = \int_c^x f(t) dt\),则:

\[\int_a^b f(x) dx = F(b) - F(a) \]

Properties of indefinite integrals

\[\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx \]

\[\int cf(x) dx = c \int f(x) dx \]

💡 \(\int f(x) dx\) 是一个集合,怎么理解 \(\int f(x) dx + \int g(x) dx\)

对于两个集合 \(A,B\),定义它们的和为 \(A + B = \{a+b | a \in A, b \in B\}\) 即可。

Reverse power rule

For \(n \ne -1\),

\[\int x^n dx = \frac {x^{n+1}} {n+1} + C \]

Proof

显然

💡 关于 \(+C\)

例:\(\int x^{-2} dx\) 根据上面的式子得到的结果是 \(- \frac 1 x + C\)。但是,图像上能看出 \(f(x) = x^{-2}\) 有两支,不难发现,在这两支图像上加上不同的常数,得到的函数也是 \(x^{-2}\) 的原函数。严谨地,应该这样写:

\[\int x^{-2} dx = \begin{cases} -\frac 1 x + C_1 & x > 0 \\ -\frac 1 x + C_2 & x < 0 \end{cases} \]

但是不妨再想一想不定积分的应用。求不定积分一般都是为了使用微积分基本定理来求定积分。在这种场合下,常数项并不重要:

  • 根据微积分基本定理,常数项会抵消。
  • 微积分基本定理不能处理有断点的情况。

所以为了偷懒,一般直接写作 \(+C\) 完事。

可以把 \(C\) 理解为一个局部的常数,仅在某一段区间内为常数,不同区间之间可能不同。

参考资料:

Indefinite integral of \(\frac 1 x\)

\[\int \frac 1 x dx = \ln |x| + C \]

Proof

由导数相关知识可知,\((\ln x)' = \frac 1 x\),但是对 \(x < 0\) 不适用,加上绝对值即可。

Indefinite integrals of \(\sin x\), \(\cos x\), and \(e^x\)

\[\int \sin x dx = -\cos x + C \]

\[\int \cos x dx = -\sin x + C \]

\[\int e^x dx = e^x + C \]

\[\int a^x dx = \frac {a^x} {\ln a} + C \]

Proof

显然

𝘶-substitution

人类智慧环节。

根据链式法则 \((f(g(x)))' = f'(g(x)) \times g'(x)\),构造 \(u = g(x)\)

\[\int f(u) \times u' dx = \int f(g(x)) \times g'(x) dx = \int f(u) du \]

只要能看出 \(\int f(u) \times u' dx\) 的格式,就能使用 𝘶-substitution。

Example

例 1:(朴素)计算 \(\int (3x^2 + 2x) e^{x^3+x^2} dx\)

解:注意到 \(3x^2 + 2x\) 恰好为 \(x^3+x^2\) 的导数,使用 𝘶-substitution,

\[\begin{aligned} & \int (3x^2 + 2x) e^{x^3+x^2} dx \\ =& \int u' e^{u} dx & \text{set } u = x^3+x^2 \\ =& \int e^u du \\ =& e^u + C \\ =& \boxed{e^{x^3+x^2} + C} \\ \end{aligned}\]

例 2:(构造导数)计算 \(\int \sqrt {7x+9} dx\)

解:构造 \(7x+9\) 的导数,

\[\begin{aligned} & \int \sqrt {7x+9} dx \\ =& \frac 1 7 \int 7 \sqrt{7x+9} dx \\ =& \frac 1 7 \int \sqrt u \times u' dx & \text{set } u = 7x+9 \\ =& \frac 1 7 \int \sqrt u du \\ =& \frac 1 7 \times \frac {2 u^{\frac 3 2}} 3 + C \\ =& \boxed{\frac 2 {21} (7x+9)^{\frac 3 2} + C} \\ \end{aligned}\]

例 3:(朴素)计算 \(\int \frac {(\ln x)^{10}} x dx\)

解:

\[\begin{aligned} & \int \frac {(\ln x)^{10}} x dx \\ =& \int u^{10} \times u' dx & \text{set } u = \ln x \\ =& \int u^{10} du \\ =& \frac {u^{11}} {11} + C \\ =& \boxed{\frac {(\ln x)^{11}} {11} + C} \\ \end{aligned}\]

例 4:(转化后朴素)计算 \(\int \tan x dx\)

解:

\[\begin{aligned} & \int \tan x dx \\ =& \int \frac {\sin x} {\cos x} dx \\ =& - \int \frac 1 {\cos x} \times (- \sin x) dx \\ =& - \int \frac 1 u \times u' dx & \text{set } u = \cos x \\ =& - \int \frac 1 u du \\ =& - \ln |u| + C \\ =& \boxed{- \ln |\cos x| + C} \\ \end{aligned}\]

例 5:(配方 \(\arctan\))计算 \(\int \frac 1 {5x^2 + 30x + 65} dx\)

解:

\[\begin{aligned} & \int \frac 1 {5x^2 + 30x + 65} dx \\ =& \frac 1 5 \int \frac 1 {(x-3)^2 + 4} dx \\ =& \frac 1 {20} \int \frac 1 {(\frac {x-3} 2)^2 + 1} dx \\ =& \frac 1 {20} \int \frac 1 {u^2 + 1} \times 2u' dx & \text{set } u = \frac {x-3} 2 \\ =& \frac 1 {10} \int \frac 1 {u^2 + 1} du \\ =& \frac 1 {10} \arctan u + C\\ =& \boxed{\frac 1 {10} \arctan \left( \frac {x-3} 2 \right) + C} \\ \end{aligned}\]

(显然任何形如 \(\int \frac 1 {ax^2 + bx + c} dx\)\(\Delta < 0\) 的式子都能这样求解)

例 6:(配方 \(\arcsin\))计算 \(\int \frac 1 {\sqrt{-x^2+10x+11}} dx\)

解:

\[\begin{aligned} & \int \frac 1 {\sqrt{-x^2+10x+11}} dx \\ =& \int \frac 1 {\sqrt{36 - (x-5)^2}} dx \\ =& \int \frac 1 {6 \sqrt{1 - (\frac {x-5} 6)^2}} dx \\ =& \int \frac 1 {\sqrt{1-u^2}} \times u' dx & \text{set } u = \frac {x-5} 6 \\ =& \int \frac 1 {\sqrt{1-u^2}} du \\ =& \arcsin u \\ =& \boxed{\arcsin \left( \frac {x-5} 6 \right)} \\ \end{aligned}\]

Integration by parts

\[\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx \]

Proof

\[\begin{aligned} (f(x) g(x))' &= f'(x) g(x) + f(x) g'(x) \\ f(x) g(x) &= \int f'(x) g(x) dx + \int f(x) g'(x) dx \\ \int f(x) g'(x) dx &= f(x) g(x) - \int f'(x) g(x) dx \\ \end{aligned}\]

Example

例 1:计算 \(\int x \cos x dx\)

解:

\[\begin{aligned} & \int x \cos x dx \\ =& x \sin x - \int 1 \times \sin x dx \\ =& \boxed{x \sin x + \cos x + C} \\ \end{aligned}\]

例 2:计算 \(\int \ln x dx\)

解:

\[\begin{aligned} & \int \ln x dx \\ =& \int \ln x \times 1 dx \\ =& x \ln x - \int \frac 1 x \times x dx \\ =& \boxed{x \ln x - x + C} \\ \end{aligned}\]

例 3:计算 \(\int e^x \cos x dx\)\(\int e^x \sin x dx\)

解:

\[\begin{aligned} & \int e^x \cos x dx \\ =& e^x \sin x - \int e^x \sin x dx \\ =& e^x \sin x - (- e^x \cos x + \int e^x \cos x dx) \end{aligned}\]

解得 \(\int e^x \cos x dx = \boxed{\frac {e^x (\sin x + \cos x)} 2 + C}\)\(\int e^x \sin x dx = \boxed{\frac {e^x (\sin x - \cos x)} 2 + C}\)

Integration with partial fractions

Example

例:计算 \(\int \frac {x-5} {(2x-3) (x-1)} dx\)

解:

\[\begin{aligned} & \int \frac {x-5} {(2x-3) (x-1)} dx \\ =& \int (- \frac 7 {2x-3} + \frac 4 {x-1}) dx \\ =& \boxed{- \frac 7 2 \ln |2x-3| + 4 \ln |x-1| + C} \\ \end{aligned}\]

Improper integrals

Example

例 1:(convergent)计算 \(\int_1^{\infty} \frac 1 {x^2} dx\)

\[\begin{aligned} & \int_1^{\infty} \frac 1 {x^2} dx \\ =& \lim\limits_{n \rightarrow \infty} \int_1^n \frac 1 {x^2} dx \\ =& \lim\limits_{n \rightarrow \infty} (1 - \frac 1 n) \\ =& \boxed 1 \\ \end{aligned}\]

例 2:(divergent)计算 \(\int_1^{\infty} \frac 1 x dx\)

\[\begin{aligned} & \int_1^{\infty} \frac 1 x dx \\ =& \lim\limits_{n \rightarrow \infty} \int_1^n \frac 1 x dx \\ =& \lim\limits_{n \rightarrow \infty} \ln n \\ =& \boxed \infty \\ \end{aligned}\]

posted @ 2024-07-16 19:58  August_Light  阅读(63)  评论(0)    收藏  举报