Unit 6: Integration and accumulation of change
Approximating areas with Riemann sums
A Riemann sum is an approximation of the area under a curve by dividing it into multiple simple shapes (like rectangles or trapezoids).
对于每个 \([l,r]\) 的长方形,其"高"定义为:
- 对于 left Riemann sum: \(f(l)\)
- 对于 right Riemann sum: \(f(r)\)
- 对于 midpoint Riemann sum: \(f(\frac {l + r} 2)\)
- 对于 trapezoidal sum: \(\frac {f(l) + f(r)} 2\)
用求和符号写出 \([a,b]\) 上 \(f\) 的 left Riemann sum / right Riemann sum:令 \(\Delta x = \frac {b - a} n\),\(x_i = a + i \Delta x\),
- left Riemann sum: \(\sum\limits_{i=0}^{n-1} f(x_i) \Delta x\)
- right Riemann sum: \(\sum\limits_{i=1}^{n} f(x_i) \Delta x\)
Definite integral as the limit of a Riemann sum
不妨用左黎曼和定义定积分:
\[\int_a^b f(x) dx = \lim\limits_{n \rightarrow \infty} \sum\limits_{i=0}^{n-1} f(x_i) \Delta x
\]
\(x_i\) 与 \(\Delta x\) 同上文:\(\Delta x = \frac {b - a} n\),\(x_i = a + i \Delta x\)。
⚠️这是一个数列极限,有关内容见 Unit 10。
The fundamental theorem of calculus - First part
若 \(f\) 在 \([c,d]\) 上连续,定义 \(F(x) = \int_c^x f(t) dt\)(其中 \(c \le x \le d\)),则:
\[F'(x) = f(x)
\]
通过该定理可知,任何连续函数都有反导数。
Proof
根据导数和定积分定义:
\[F'(x) = \lim\limits_{\Delta x \rightarrow 0} \frac 1 {\Delta x} \int_x^{x + \Delta x} f(t) dt
\]
根据 Unit 8 知识点 MVT for integrals,必存在 \(c \in [x, x + \Delta x]\) 使得 \(f(c) = \frac 1 {\Delta x} \int_x^{x + \Delta x} f(t) dt\)。\(c\) 可以视作一个关于 \(\Delta x\) 的函数,设 \(C(\Delta x) = c\)。
根据夹逼定理,\(x \le C(\Delta x) \le x + \Delta x\),可得 \(\lim\limits_{\Delta x \rightarrow 0} C(\Delta x) = x\)。
因此 \(F'(x) = \lim\limits_{\Delta x \rightarrow 0} f(C(\Delta x)) = f(x)\)。
Properties of definite integrals
Sum/Difference:
\[\int_a^b f(x) dx + \int_a^b g(x) dx = \int_a^b (f(x) + g(x)) dx
\]
Constant multiple:
\[\int_a^b c f(x) dx = c \int_a^b f(x) dx
\]
Reverse interval:
\[\int_a^b f(x) dx = - \int_b^a f(x) dx
\]
Adding intervals:
\[\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx
\]
The fundamental theorem of calculus - Second part
若 \(f\) 在 \([c,d]\) 上连续,定义 \(F(x) = \int_c^x f(t) dt\),则:
\[\int_a^b f(x) dx = F(b) - F(a)
\]
Properties of indefinite integrals
\[\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx
\]
\[\int cf(x) dx = c \int f(x) dx
\]
💡 \(\int f(x) dx\) 是一个集合,怎么理解 \(\int f(x) dx + \int g(x) dx\)?
对于两个集合 \(A,B\),定义它们的和为 \(A + B = \{a+b | a \in A, b \in B\}\) 即可。
Reverse power rule
For \(n \ne -1\),
\[\int x^n dx = \frac {x^{n+1}} {n+1} + C
\]
Proof
显然
💡 关于 \(+C\)
例:\(\int x^{-2} dx\) 根据上面的式子得到的结果是 \(- \frac 1 x + C\)。但是,图像上能看出 \(f(x) = x^{-2}\) 有两支,不难发现,在这两支图像上加上不同的常数,得到的函数也是 \(x^{-2}\) 的原函数。严谨地,应该这样写:
\[\int x^{-2} dx = \begin{cases} -\frac 1 x + C_1 & x > 0 \\ -\frac 1 x + C_2 & x < 0 \end{cases}
\]
但是不妨再想一想不定积分的应用。求不定积分一般都是为了使用微积分基本定理来求定积分。在这种场合下,常数项并不重要:
- 根据微积分基本定理,常数项会抵消。
- 微积分基本定理不能处理有断点的情况。
所以为了偷懒,一般直接写作 \(+C\) 完事。
可以把 \(C\) 理解为一个局部的常数,仅在某一段区间内为常数,不同区间之间可能不同。
参考资料:
Indefinite integral of \(\frac 1 x\)
\[\int \frac 1 x dx = \ln |x| + C
\]
Proof
由导数相关知识可知,\((\ln x)' = \frac 1 x\),但是对 \(x < 0\) 不适用,加上绝对值即可。
Indefinite integrals of \(\sin x\), \(\cos x\), and \(e^x\)
\[\int \sin x dx = -\cos x + C
\]
\[\int \cos x dx = -\sin x + C
\]
\[\int e^x dx = e^x + C
\]
\[\int a^x dx = \frac {a^x} {\ln a} + C
\]
Proof
显然
𝘶-substitution
人类智慧环节。
根据链式法则 \((f(g(x)))' = f'(g(x)) \times g'(x)\),构造 \(u = g(x)\),
\[\int f(u) \times u' dx = \int f(g(x)) \times g'(x) dx = \int f(u) du
\]
只要能看出 \(\int f(u) \times u' dx\) 的格式,就能使用 𝘶-substitution。
Example
例 1:(朴素)计算 \(\int (3x^2 + 2x) e^{x^3+x^2} dx\)。
解:注意到 \(3x^2 + 2x\) 恰好为 \(x^3+x^2\) 的导数,使用 𝘶-substitution,
\[\begin{aligned}
& \int (3x^2 + 2x) e^{x^3+x^2} dx \\
=& \int u' e^{u} dx & \text{set } u = x^3+x^2 \\
=& \int e^u du \\
=& e^u + C \\
=& \boxed{e^{x^3+x^2} + C} \\
\end{aligned}\]
例 2:(构造导数)计算 \(\int \sqrt {7x+9} dx\)。
解:构造 \(7x+9\) 的导数,
\[\begin{aligned}
& \int \sqrt {7x+9} dx \\
=& \frac 1 7 \int 7 \sqrt{7x+9} dx \\
=& \frac 1 7 \int \sqrt u \times u' dx & \text{set } u = 7x+9 \\
=& \frac 1 7 \int \sqrt u du \\
=& \frac 1 7 \times \frac {2 u^{\frac 3 2}} 3 + C \\
=& \boxed{\frac 2 {21} (7x+9)^{\frac 3 2} + C} \\
\end{aligned}\]
例 3:(朴素)计算 \(\int \frac {(\ln x)^{10}} x dx\)。
解:
\[\begin{aligned}
& \int \frac {(\ln x)^{10}} x dx \\
=& \int u^{10} \times u' dx & \text{set } u = \ln x \\
=& \int u^{10} du \\
=& \frac {u^{11}} {11} + C \\
=& \boxed{\frac {(\ln x)^{11}} {11} + C} \\
\end{aligned}\]
例 4:(转化后朴素)计算 \(\int \tan x dx\)。
解:
\[\begin{aligned}
& \int \tan x dx \\
=& \int \frac {\sin x} {\cos x} dx \\
=& - \int \frac 1 {\cos x} \times (- \sin x) dx \\
=& - \int \frac 1 u \times u' dx & \text{set } u = \cos x \\
=& - \int \frac 1 u du \\
=& - \ln |u| + C \\
=& \boxed{- \ln |\cos x| + C} \\
\end{aligned}\]
例 5:(配方 \(\arctan\))计算 \(\int \frac 1 {5x^2 + 30x + 65} dx\)。
解:
\[\begin{aligned}
& \int \frac 1 {5x^2 + 30x + 65} dx \\
=& \frac 1 5 \int \frac 1 {(x-3)^2 + 4} dx \\
=& \frac 1 {20} \int \frac 1 {(\frac {x-3} 2)^2 + 1} dx \\
=& \frac 1 {20} \int \frac 1 {u^2 + 1} \times 2u' dx & \text{set } u = \frac {x-3} 2 \\
=& \frac 1 {10} \int \frac 1 {u^2 + 1} du \\
=& \frac 1 {10} \arctan u + C\\
=& \boxed{\frac 1 {10} \arctan \left( \frac {x-3} 2 \right) + C} \\
\end{aligned}\]
(显然任何形如 \(\int \frac 1 {ax^2 + bx + c} dx\) 的 \(\Delta < 0\) 的式子都能这样求解)
例 6:(配方 \(\arcsin\))计算 \(\int \frac 1 {\sqrt{-x^2+10x+11}} dx\)。
解:
\[\begin{aligned}
& \int \frac 1 {\sqrt{-x^2+10x+11}} dx \\
=& \int \frac 1 {\sqrt{36 - (x-5)^2}} dx \\
=& \int \frac 1 {6 \sqrt{1 - (\frac {x-5} 6)^2}} dx \\
=& \int \frac 1 {\sqrt{1-u^2}} \times u' dx & \text{set } u = \frac {x-5} 6 \\
=& \int \frac 1 {\sqrt{1-u^2}} du \\
=& \arcsin u \\
=& \boxed{\arcsin \left( \frac {x-5} 6 \right)} \\
\end{aligned}\]
Integration by parts
\[\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx
\]
Proof
\[\begin{aligned}
(f(x) g(x))' &= f'(x) g(x) + f(x) g'(x) \\
f(x) g(x) &= \int f'(x) g(x) dx + \int f(x) g'(x) dx \\
\int f(x) g'(x) dx &= f(x) g(x) - \int f'(x) g(x) dx \\
\end{aligned}\]
Example
例 1:计算 \(\int x \cos x dx\)。
解:
\[\begin{aligned}
& \int x \cos x dx \\
=& x \sin x - \int 1 \times \sin x dx \\
=& \boxed{x \sin x + \cos x + C} \\
\end{aligned}\]
例 2:计算 \(\int \ln x dx\)。
解:
\[\begin{aligned}
& \int \ln x dx \\
=& \int \ln x \times 1 dx \\
=& x \ln x - \int \frac 1 x \times x dx \\
=& \boxed{x \ln x - x + C} \\
\end{aligned}\]
例 3:计算 \(\int e^x \cos x dx\) 和 \(\int e^x \sin x dx\)。
解:
\[\begin{aligned}
& \int e^x \cos x dx \\
=& e^x \sin x - \int e^x \sin x dx \\
=& e^x \sin x - (- e^x \cos x + \int e^x \cos x dx)
\end{aligned}\]
解得 \(\int e^x \cos x dx = \boxed{\frac {e^x (\sin x + \cos x)} 2 + C}\),\(\int e^x \sin x dx = \boxed{\frac {e^x (\sin x - \cos x)} 2 + C}\)。
Integration with partial fractions
Example
例:计算 \(\int \frac {x-5} {(2x-3) (x-1)} dx\)。
解:
\[\begin{aligned}
& \int \frac {x-5} {(2x-3) (x-1)} dx \\
=& \int (- \frac 7 {2x-3} + \frac 4 {x-1}) dx \\
=& \boxed{- \frac 7 2 \ln |2x-3| + 4 \ln |x-1| + C} \\
\end{aligned}\]
Improper integrals
Example
例 1:(convergent)计算 \(\int_1^{\infty} \frac 1 {x^2} dx\)。
\[\begin{aligned}
& \int_1^{\infty} \frac 1 {x^2} dx \\
=& \lim\limits_{n \rightarrow \infty} \int_1^n \frac 1 {x^2} dx \\
=& \lim\limits_{n \rightarrow \infty} (1 - \frac 1 n) \\
=& \boxed 1 \\
\end{aligned}\]
例 2:(divergent)计算 \(\int_1^{\infty} \frac 1 x dx\)。
\[\begin{aligned}
& \int_1^{\infty} \frac 1 x dx \\
=& \lim\limits_{n \rightarrow \infty} \int_1^n \frac 1 x dx \\
=& \lim\limits_{n \rightarrow \infty} \ln n \\
=& \boxed \infty \\
\end{aligned}\]