AP Calculus Unit 1-5

全文的 \(d\)\(e\) 不会写作正体 \(\text d\)\(\text e\),因为我懒,而且 Khan Academy 上也没有这样写。

Unit 1: Limits and continuity

Limit

TODO:

Continuity

\(f\) 满足:

\[\lim\limits_{x \rightarrow c} f(x) = f(c) \]

则称 \(f\)\(x=c\) 处连续。

\(f\) 在区间内的任何一点处都连续,则称 \(f\) 在这个区间上连续。

Squeeze theorem

\(\forall x\),有 \(g(x) \le f(x) \le h(x)\),且 \(\lim\limits_{x \rightarrow c} g(x) = \lim\limits_{x \rightarrow c} h(x) = L\),则:

\[\lim\limits_{x \rightarrow c} f(x) = \lim\limits_{x \rightarrow c} g(x) = \lim\limits_{x \rightarrow c} h(x) = L \]

Examples

  1. Prove \(\lim\limits_{x \rightarrow 0} \frac {\sin x} x = 1\)

根据几何知识,画图(AoPS 书 P83)可知:

\[\frac {x \cos^2 x} 2 < \frac {\cos x \sin x} 2 < \frac x 2 \]

\[\cos x < \frac {\sin x} x < \frac 1 {\cos x} \]

\[1 \le \lim\limits_{x \rightarrow 0} \frac {\sin x} x \le 1 \]

\[\lim\limits_{x \rightarrow 0} \frac {\sin x} x = 1 \]

  1. Prove \(\lim\limits_{x \rightarrow 0} \frac {1 - \cos x} x = 0\)

\[\begin{aligned} & \lim\limits_{x \rightarrow 0} \frac {1 - \cos x} x \\ =& \lim\limits_{x \rightarrow 0} \frac {\sin^2 x} {x (1 + \cos x)} \\ =& \lim\limits_{x \rightarrow 0} \frac {\sin^2 x} x \lim\limits_{x \rightarrow 0} \frac 1 {1 + \cos x} \\ =& 0 \\ \end{aligned}\]

Intermediate value theorem (IVT)

\(f\)\([a,b]\) 上连续,则对于区间 \((\min(f(a), f(b)), \max(f(a), f(b)))\) 内的任何一个数 \(C\),都存在 \(c \in (a,b)\) 满足 \(f(c) = C\)

图像上看很符合直觉。

Unit 2: Differentiation: definition and basic derivative rules

导数的几何意义为函数图像上一点的斜率。

Definition of the derivative

\[f'(x) = \lim\limits_{h \rightarrow 0} \frac {f(x+h) - f(x)} h \]

不可导的点没有切线这一说。

Example: Consider the polar curve \(r = 1 - \sin\theta\) for \(0 \le \theta < 2\pi\). At which values of \(\theta\) does the graph of \(r\) have a horizontal tangent line?

官方答案只有 \(\frac 1 6 \pi\)\(\frac 5 6 \pi\)\(\frac 3 2 \pi\),并没有 \(\frac 1 2 \pi\)

Differentiability implies continuity

\(f'(x) = \lim\limits_{h \rightarrow 0} \frac {f(x+h) - f(x)} h\) 存在,意味着 \(\lim\limits_{h \rightarrow 0} f(x+h) - f(x) = 0\)\(\lim\limits_{h \rightarrow 0} f(x+h) = f(x)\)

Power Rule

\[(x^n)' = n x^{n-1} \]

Proof

证明基于 Unit 3 的知识点 Chain rule。

\[\begin{aligned} & (x^n)' \\ =& (e^{n \ln x})' \\ =& e^{n \ln x} \times \frac n x \\ =& n x^{n-1} \end{aligned}\]

Product Rule

\[(f(x) \times g(x))' = f'(x)g(x) + f(x)g'(x) \]

Proof

\[\begin{aligned} & (f(x) \times g(x))' \\ =& \lim\limits_{h \rightarrow 0} \frac {f(x+h) g(x+h) - f(x) g(x)} h \\ =& \lim\limits_{h \rightarrow 0} \frac {f(x+h) g(x+h) - f(x) g(x+h) + f(x) g(x+h) - f(x) g(x)} h \\ =& \left( \lim\limits_{h \rightarrow 0} \frac {f(x+h) g(x+h) - f(x) g(x+h)} h \right) + \left( \lim\limits_{h \rightarrow 0} \frac {f(x) g(x+h) - f(x) g(x)} h \right) \\ =& \left( f'(x) \lim\limits_{h \rightarrow 0} g(x+h) \right) + f(x) g'(x) \\ =& f'(x) g(x) + f(x) g'(x) \\ \end{aligned}\]

Quotient Rule

\[\left(\frac {f(x)} {g(x)}\right)' = \frac {f'(x)g(x) - f(x)g'(x)} {g(x)^2} \]

Proof

证明基于 Unit 3 的知识点 Chain rule。

\[\begin{aligned} & \left(\frac {f(x)} {g(x)}\right)' \\ =& (f(x) \times (g(x))^{-1})' \\ =& f'(x) (g(x))^{-1} + f(x) \times (-1)(g(x))^{-2} \times g'(x) \\ =& \frac {f'(x)g(x) - f(x)g'(x)} {g(x)^2} \end{aligned}\]

Derivatives of \(\sin x\), \(\cos x\)

\[\sin'x = \cos x \]

\[\cos'x = -\sin x \]

Proof

\[\begin{aligned} & \sin' x \\ =& \lim\limits_{\Delta x \rightarrow 0} \frac {\sin(x + \Delta x) - \sin x} {\Delta x} \\ =& \lim\limits_{\Delta x \rightarrow 0} \frac {\sin x \cos \Delta x + \cos x \sin \Delta x - \sin x} {\Delta x} \\ =& \lim\limits_{\Delta x \rightarrow 0} \cos x \frac {\sin \Delta x} {\Delta x} + \lim\limits_{\Delta x \rightarrow 0} \sin x \frac {\cos \Delta x - 1} {\Delta x} \\ =& \cos x \\ \end{aligned}\]

\[\begin{aligned} & \cos'x \\ =& \sin' (x + \frac \pi 2) \\ =& \cos (x + \frac \pi 2) \\ =& - \sin x \\ \end{aligned}\]

Derivatives of \(\tan x\), \(\cot x\)

\[\tan' x = \sec^2 x = \frac 1 {\cos^2 x} \]

\[\cot' x = - \csc^2 x = - \frac 1 {\sin^2 x} \]

Proof

Use the quotient rule.

Unit 3: Differentiation: composite, implicit, and inverse functions

Chain Rule

For differtiable functions \(f\) and \(g\), we have

\[(f \circ g)'(x) = (f' \circ g)(x) \times g'(x) \]

\((f(g(x)))' = f'(g(x)) \times g'(x)\)

链式法则用于处理复合函数(composite function)的求导。

Proof

\[\begin{aligned} & (f \circ g)'(x) \\ =& \lim\limits_{x \rightarrow a} \frac {f(g(x)) - f(g(a))} {x - a} \\ =& \lim\limits_{x \rightarrow a} \frac {f(g(x)) - f(g(a))} {g(x) - g(a)} \times \lim\limits_{x \rightarrow a} \frac {g(x) - g(a)} {x - a} \\ =& f'(g(x)) \times g'(x) \\ \end{aligned}\]

Derivative of \(a^x\)

For \(a > 0\),

\[(a^x)' = a^x \ln a \]

Proof

\[\begin{aligned} & (a^x)' \\ =& (e^{x \ln a})' \\ =& e^{x \ln a} \times \ln a & \text{Chain Rule} \\ =& a^x \ln a \\ \end{aligned}\]

Derivatives of inverse functions

\(g\)\(f\) 的反函数。

\[f'(x) = \frac 1 {g'(f(x))} \]

Proof

反函数定义:

\[g(f(x)) = x \]

两边同时求导:

\[g'(f(x)) \times f'(x) = 1 \]

\[f'(x) = \frac 1 {g'(f(x))} \]

Derivative of \(\log_a x\)

For \(a > 0 \land a \ne 1\),

\[(\log_a x)' = \frac 1 {x \ln a} \]

Proof

\[\begin{aligned} & (\log_a x)' \\ =& \frac 1 {a^{\log_a x} \ln a} & \text{Derivatives of inverse functions} \\ =& \frac 1 {x \ln a} \\ \end{aligned}\]

💡 \(\ln\)\(e\):先有鸡还是先有蛋

涉及到 Unit 6 的知识。

先有 \(\ln\)

\[\ln a := \int_1^a \frac 1 x dx \]

\(\ln\) 的性质:\(\ln a + \ln b = \ln (ab)\)

\[\begin{aligned} & \ln a + \ln b \\ =& \int_1^a \frac 1 x dx + \int_1^b \frac 1 x dx \\ =& \int_1^a \frac 1 x dx + \int_a^{ab} \frac 1 {au} d(au) & \text{set } u = \frac x a \\ =& \int_1^a \frac 1 x dx + \int_a^{ab} \frac 1 x dx \\ =& \int_1^{ab} \frac 1 x dx \\ =& \ln (ab) \\ \end{aligned}\]

定义 \(\ln\) 的反函数为 \(\exp\)

分析 \(\exp\) 的性质:

\(A = \exp(a), B = \exp(b)\)

\[\begin{aligned} \ln A + \ln B &= \ln (AB) \\ \exp(\ln A + \ln B) &= AB \\ \exp(a + b) &= \exp(a)\exp(b) \\ \end{aligned}\]

我们发现 \(\exp\) 符合我们对指数函数的印象。

因此,定义 \(e = \exp(1)\) 作为底数。

\[\exp(x) = e^x \]

利用这样的指数函数定义,可以使 \(a^b\)\(b\) 是无理数时也有良好定义:\(a^b := \exp(b \ln a)\)

\(e\) 的值是多少?

\(x=1\) 处对 \(\ln x\) 求导:

\[\begin{aligned} & \lim\limits_{h \rightarrow 0} \frac {\ln(1 + h) - \ln 1} h \\ =& \lim\limits_{h \rightarrow 0} \ln\left((1+h)^{\frac 1 h}\right) \\ =& \ln \lim\limits_{h \rightarrow 0} (1+h)^{\frac 1 h} \\ \end{aligned}\]

根据微积分基本定理,\(\ln x\) 求导得 \(\frac 1 x\),在 \(x=1\) 处为 \(1\)

\[\begin{aligned} 1 &= \ln \lim\limits_{h \rightarrow 0} (1+h)^{\frac 1 h} \\ e &= \lim\limits_{h \rightarrow 0} (1+h)^{\frac 1 h} \end{aligned}\]

Derivative of \(\arcsin x\) and \(\arccos x\)

\[\arcsin' x = \frac 1 {\sqrt {1 - x^2}} \]

\[\arccos' x = - \frac 1 {\sqrt {1 - x^2}} \]

Proof

\[\arcsin' x = \frac 1 {\sin' \arcsin x} = \frac 1 {\cos \arcsin x} \]

这一形式并不方便使用,所以继续推导,由于 \(\cos a = \sqrt {1 - (\sin a)^2}\)

\[\frac 1 {\cos \arcsin x} = \frac 1 {\sqrt {1 - (\sin \arcsin x)^2}} = \frac 1 {\sqrt {1 - x^2}} \]

\(\arccos\) 的推导同理。

Derivative of \(\arctan x\)

\[\arctan' x = \frac 1 {1 + x^2} \]

Proof

\[\arctan' x = \frac 1 {\tan' \arctan x} = \cos^2 \arctan x \]

这一形式并不方便使用,所以继续推导,由于 \(\cos^2 a = \frac 1 {1 + \tan^2 a}\)

\[\cos^2 \arctan x = \frac 1 {1 + (\tan \arctan x)^2} = \frac 1 {1 + x^2} \]

Implicit differentiation

It is an application of the chain rule.

当你有一个 \(x\)\(y\) 的关系(形如一个等式),为了求 \(\frac {dy} {dx}\) 可以将等式两边同时求导。

最终得到的 \(\frac {dy} {dx}\) 中会同时含有 \(x\)\(y\)。因此此方法一般与几何问题结合,用于求函数图像上某一点斜率。

Unit 4: Contextual applications of differentiation

这个 Unit 前面的内容很水,一直在做应用题,直到 Quiz 2 后面才有新知识点。

Local linearity

一般来说,将函数图像的某个局部放大,放到足够大之后看起来就像一条直线。

利用这个性质,可以用导数来估算函数值。

例:设 \(f(x) = \sqrt x\)。估算 \(f(4.36)\) 的值。

解:在 \(4.36\) 附近,\(f(4) = 2\) 是容易得到的。设 \(L(x) = f(4) + f'(4)(x-4)\) 为一条直线,则 \(f(4.36) \approx L(4.36) = 2.09\)

实际上 \(f(4.36) \approx 2.08806\)

在例子中,我们取的点是 \(4.36\)\(4\)。不难发现,这两个点离得越近,这个方法的精度越高,离得越远则精度越低。

L'Hôpital's rule

不定式是指形如 \(\frac 0 0\)\(\frac \infty \infty\)\(\frac \infty {-\infty}\)\(\frac {-\infty} \infty\)\(\frac {-\infty} {-\infty}\) 的式子。

若需要求的极限形如 \(\lim\limits_{x \rightarrow c} \frac {f(x)} {g(x)}\),计算 \(f(c)\)\(g(c)\) 后发现 \(\frac {f(c)} {g(c)}\) 是不定式,则可以使用洛必达法则:

\(\lim\limits_{x \rightarrow c} \frac {f'(x)} {g'(x)}\) 存在,则:

\[\lim\limits_{x \rightarrow c} \frac {f(x)} {g(x)} = \lim\limits_{x \rightarrow c} \frac {f'(x)} {g'(x)} \]

Unit 5: Applying derivatives to analyze functions

Mean value theorem (MVT)

(即拉格朗日中值定理)

\(f\)\((a,b)\) 上可导,在 \([a,b]\) 上连续,则必存在一点 \(c \in (a,b)\) 使得 \(f'(c) = \frac {f(b) - f(a)} {b-a}\)

Extreme value theorem (EVT)

\(f\)\([a,b]\) 上连续,则必存在最大值和最小值。

Critical point

对于函数 \(f\),若一个点 \(x=a\) 同时满足(1) \(f(a)\) 有定义(2)\(f'(a) = 0\)\(f'(a) = \text{undefined}\),则这个点为一个 critical point。

对于一个区间,(非区间边界上的)极值点一定是 critical point。

若经过一个 critical point 时导数的符号改变了,则这是一个 extremum point(极值点)。由正转负是最大值,由负转正是最小值。

Concavity

\(f''(c) > 0\),则 \(x=c\) 在一个 concave upward 中,即开口向上。

\(f''(c) < 0\),则 \(x=c\) 在一个 concave downward 中,即开口向下。

对应 critical point 的概念,对于函数 \(f\),若一个点 \(x=a\) 同时满足(1) \(f'(a)\) 有定义(2)\(f''(a) = 0\)\(f''(a) = \text{undefined}\),则这个点为一个 candidate inflection point。

若经过一个点时二阶导数的符号改变了,则这是一个 inflection point(拐点)。即一阶导数的极值点。

posted @ 2024-07-17 21:31  August_Light  阅读(74)  评论(0)    收藏  举报