最大流+技巧
题意:每条光纤都有流量上线,如果扩展某一条光纤的上限,能让总部的接收总流量增加,那么这条光纤就符合题目的条件,输出所有满足题目条件的光纤编号(从小到大)。建图跑一次最大流之后,会存在若干条满流的边,答案要求的边就在这些满流的边之中,但并不是说每一条满流的边都是符合题目条件的,比如说:
一条增广路有超过1条满流的边,但是扩展其中某一条边的容量,总流量是不会增加的。
对于某一条满流的边,我们如果知道左端点到源点s存在一条不包含满流边的路径,右端点到汇点存在一条不包含满流边的路径,那么当前这条满流边就是可取的。
所以分别从源点和汇点dfs标记一次就行了。
#pragma GCC optimize(2)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
using namespace std;
typedef long long ll;
const int Maxn = 100+10;
const int INF = 0x3f3f3f3f;
const int Mod = 1e9+7;
struct Edge {
int v, cap, flow, next;
} edge[Maxn*Maxn];
int h[Maxn], edge_cnt;
int indx[Maxn], deep[Maxn];
int ans[Maxn*Maxn];
bool from[Maxn], to[Maxn];
void add(int u, int v, int c) {
edge[edge_cnt].v = v;
edge[edge_cnt].cap = c;
edge[edge_cnt].flow = 0;
edge[edge_cnt].next = h[u];
h[u] = edge_cnt++;
edge[edge_cnt].v = u;
edge[edge_cnt].cap = 0;
edge[edge_cnt].flow = 0;
edge[edge_cnt].next = h[v];
h[v] = edge_cnt++;
}
bool bfs(int s, int t) {
memset(deep, -1, sizeof(deep));
queue <int> qu;
qu.push(s); deep[s] = 0;
while(!qu.empty()) {
int u = qu.front(); qu.pop();
for(int i = h[u]; i != -2; i = edge[i].next) {
Edge e = edge[i];
if(deep[e.v] == -1 && (e.cap > e.flow)) {
deep[e.v] = deep[u]+1;
qu.push(e.v);
}
}
}
if(deep[t] == -1) return false;
else return true;
}
int dfs(int u, int t, int a) {
if(u == t || a == 0) return a;
if(indx[u] == -1) indx[u] = h[u];
int flow = 0;
for(int &i = indx[u]; i != -2; i = edge[i].next) {
Edge &e = edge[i];
if(deep[e.v] == deep[u]+1) {
int f = dfs(e.v, t, min(a, e.cap-e.flow));
if(f > 0) {
e.flow += f;
edge[i^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
}
return flow;
}
void dinic(int s, int t) {
int flow = 0;
while(bfs(s, t)) {
memset(indx, -1, sizeof(indx));
flow += dfs(s, t, INF);
}
}
void mark(int u, int flag, bool *tmp) {
tmp[u] = true;
for(int i = h[u]; i != -2; i = edge[i].next) {
Edge &e = edge[i];
if(flag == 1) {
if(tmp[e.v] || e.cap == 0) continue;
if(e.cap > e.flow) mark(e.v, flag, tmp);
} else {
if(tmp[e.v] || e.cap > 0) continue;
if(edge[i^1].cap > edge[i^1].flow) mark(e.v, flag, tmp);
}
}
}
int main(void)
{
int n, m, L;
while(scanf("%d%d%d", &n, &m, &L) != EOF) {
if(!n && !m && !L) break;
for(int i = 0; i <= n+m+2; ++i) h[i] = -2;
edge_cnt = 0;
int u, v, c, s = n+m+1;
for(int i = 0; i < L; ++i) {
scanf("%d%d%d", &u, &v, &c);
add(u, v, c);
}
for(int i = 1; i <= n; ++i) add(s, i, INF);
dinic(s, 0);
memset(from, false, sizeof(from));
memset(to, false, sizeof(to));
mark(s, 1, from);
mark(0, 2, to);
int cnt = 0;
for(int i = 1; i <= n+m; ++i) {
for(int j = h[i]; j != -2; j = edge[j].next) {
Edge e = edge[j];
if(e.cap > 0 && e.cap == e.flow) {
if(from[i] && to[e.v]) ans[cnt++] = ((j^1)+1)/2;
}
}
}
sort(ans, ans+cnt);
for(int i = 0; i < cnt; ++i) {
printf("%d", ans[i]);
if(i < cnt-1) printf(" ");
}
puts("");
}
return 0;
}
浙公网安备 33010602011771号