最大流
如果是单向边,那么反向弧的容量和流量都设置为0,否则容量和流量都和正向边一样。有弧优化可以不用炸点优化
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int Maxn = 1e6+10;
const int INF = 0x3f3f3f3f;
const long long LINF = 1e18;
struct Edge {
int v, cap, flow, next;
} edge[Maxn*6];
int h[Maxn], edge_cnt;
int indx[Maxn], deep[Maxn], qu[Maxn];
void add(int u, int v, int c) {
edge[edge_cnt].v = v;
edge[edge_cnt].cap = c;
edge[edge_cnt].flow = 0;
edge[edge_cnt].next = h[u];
h[u] = edge_cnt++;
edge[edge_cnt].v = u;
edge[edge_cnt].cap = c;
edge[edge_cnt].flow = 0;
edge[edge_cnt].next = h[v];
h[v] = edge_cnt++;
}
bool bfs(int s, int t) {
int head = 0, tail = 0;
memset(deep, 0, sizeof(deep));
deep[s] = 1; qu[tail++] = s;
while(head < tail) {
int u = qu[head++];
for(int i = h[u]; i != -2; i = edge[i].next) {
Edge &e = edge[i];
if(deep[e.v] == 0 && e.cap-e.flow > 0) {
deep[e.v] = deep[u]+1;
qu[tail++] = e.v;
}
}
}
if(deep[t] > 0) return true;
else return false;
}
int dfs(int cur, int t, int a) {
if(cur == t || a == 0) return a;
int flow = 0, f;
if(indx[cur] == -1) indx[cur] = h[cur];
for(int &i = indx[cur]; i != -2; i = edge[i].next) {
Edge &e = edge[i];
if(deep[e.v] == deep[cur]+1) {
f = dfs(e.v, t, min(a, e.cap-e.flow));
if(f > 0) {
e.flow += f;
edge[i^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
}
// if(flow == 0) deep[cur] = -2; // 有弧优化,炸点优化可以不要
return flow;
}
void dinic(int s, int t) {
int ans = 0;
while(bfs(s, t)) {
memset(indx, -1, sizeof(indx));
ans += dfs(s, t, INF);
}
printf("%d\n", ans);
return;
}
int main(void)
{
int N, M, c;
scanf("%d%d", &N, &M);
for(int i = 0; i < Maxn; ++i) h[i] = -2;
edge_cnt = 0;
for(int i = 0; i < N; ++i) {
for(int j = 0; j < M-1; ++j) {
scanf("%d", &c);
add(i*M+j, i*M+j+1, c);
}
}
for(int i = 0; i < N-1; ++i) {
for(int j = 0; j < M; ++j) {
scanf("%d", &c);
add(i*M+j, (i+1)*M+j, c);
}
}
for(int i = 0; i < N-1; ++i) {
for(int j = 0; j < M-1; ++j) {
scanf("%d", &c);
add(i*M+j, (i+1)*M+j+1, c);
}
}
dinic(0, N*M-1);
return 0;
}
浙公网安备 33010602011771号