2025.10.7

bot选

image

前两问容易解决,得 \(E:\dfrac{x^2}{6}+\dfrac{y^2}{3}=1\)\(y_p\in(1,3]\)

bot指出:第三问是可以直接联立爆算的!

\(P(x_0,y_0)\),则 \(MN:x_0x+2y_0y-6=0\)\(P\)\(MN\) 的距离为:

\[\dfrac{x_0^2+2y_0^2-6}{\sqrt{x_0^2+4y_0^2}} \]

然后将 \(MN\)\(E\) 联立,得到:

\[(\dfrac{x_0^2+2y_0^2}{2y_0^2})x^2-\dfrac{6x_0}{y_0^2}x+(\dfrac{18}{y_0^2}-6)=0\\ |x_M-x_N|=\dfrac{4y_0\sqrt{3}\sqrt{x_0^2+2y_0^2-6}\sqrt{x_0^2+4y_0^2}}{x_0^2+2y_0^2}\\ |MN|=|x_M-x_N|\times\sqrt{1+k_{MN}^2}=|x_M-x_N|\times \dfrac{\sqrt{x_0^2+4y_0^2}}{2y_0}\\ =\dfrac{2\sqrt{3}\sqrt{x_0^2+2y_0^2-6}\sqrt{x_0^2+4y_0^2}}{x_0^2+2y_0^2} \]

因此:

\[S=\dfrac{1}{2}|MN|\times d\\ =\dfrac{\sqrt{3}\sqrt{x_0^2+2y_0^2-6}^{3/2}}{x_0^2+2y_0^2} \]

\(t=x_0^2+2y_0^2-6\),有 \(S=\sqrt{3}\dfrac{t^{3/2}}{t+6}\)

\(f(t)=\dfrac{t^{3/2}}{t+6}\),则 \(f'(t)=\dfrac{\dfrac{3}{2}\sqrt{t}(t+6)-t\sqrt{t}}{(t+6)^2}\)

\(t=x_0^2+2y_0^2-6,x_0^2+(y_0-1)^2=4\Rightarrow t=y_0^2+2y_0-3\in(0,12]\)

因此 \(f'(t)>0\)\(f(t)\) 递增,故 \(S\) 最大值在 \(t=12\) 时取到,为 \(4\)

posted @ 2025-10-07 16:54  Assembly_line  阅读(7)  评论(0)    收藏  举报