• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
Artimislyy
博客园    首页    新随笔    联系   管理    订阅  订阅

二叉树的表达

2019-08-03

19:52:58

A rooted binary tree is a tree with a root node in which every node has at most two children.

Your task is to write a program which reads a rooted binary tree T and prints the following information for each node u of T:

  • node ID of u
  • parent of u
  • sibling of u
  • the number of children of u
  • depth of u
  • height of u
  • node type (root, internal node or leaf)

If two nodes have the same parent, they are siblings. Here, if u and v have the same parent, we say u is a sibling of v (vice versa).

The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf.

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1.

Output

Print the information of each node in the following format:

node id: parent = p , sibling = s , degree = deg, depth = dep, height = h, type

p is ID of its parent. If the node does not have a parent, print -1.

s is ID of its sibling. If the node does not have a sibling, print -1.

deg, dep and h are the number of children, depth and height of the node respectively.

type is a type of nodes represented by a string (root, internal node or leaf. If the root can be considered as a leaf or an internal node, print root.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 25

Sample Input 1

9
0 1 4
1 2 3
2 -1 -1
3 -1 -1
4 5 8
5 6 7
6 -1 -1
7 -1 -1
8 -1 -1

Sample Output 1

node 0: parent = -1, sibling = -1, degree = 2, depth = 0, height = 3, root
node 1: parent = 0, sibling = 4, degree = 2, depth = 1, height = 1, internal node
node 2: parent = 1, sibling = 3, degree = 0, depth = 2, height = 0, leaf
node 3: parent = 1, sibling = 2, degree = 0, depth = 2, height = 0, leaf
node 4: parent = 0, sibling = 1, degree = 2, depth = 1, height = 2, internal node
node 5: parent = 4, sibling = 8, degree = 2, depth = 2, height = 1, internal node
node 6: parent = 5, sibling = 7, degree = 0, depth = 3, height = 0, leaf
node 7: parent = 5, sibling = 6, degree = 0, depth = 3, height = 0, leaf
node 8: parent = 4, sibling = 5, degree = 0, depth = 2, height = 0, leaf
#include <bits/stdc++.h>
using namespace std;
#define MAX 100005
#define NIL -1

int H[MAX];
int D[100005];
struct Node{
    int parent,left,right;
}t[MAX];

void setDepth(int u, int d)
{
    if(u == NIL) return ;
    D[u] = d;
    setDepth(t[u].left, d + 1);
    setDepth(t[u].right, d + 1);
}

int setHeight(int u)
{
    int h1 = 0,h2 = 0;
    if(t[u].left != NIL)
    {
        h1 = setHeight(t[u].left) + 1;
    }
    if(t[u].right != NIL)
    {
        h2 = setHeight(t[u].right) + 1;
    }
    H[u] = max(h1 , h2);
    return H[u];
}

int getSibling(int u)
{
    if(t[u].parent == NIL) return NIL;
    if(t[t[u].parent].left != u && t[t[u].parent].left != NIL)
    {
        return t[t[u].parent].left;
    }
    if(t[t[u].parent].right != u && t[t[u].parent].right != NIL)
    {
        return t[t[u].parent].right;
    }
    return NIL;
}
void print(int u)
{
    printf("node %d: ", u);
    printf("parent = %d, ",  t[u].parent);
    printf("sibling = %d, ", getSibling(u));
    int deg = 0;
    if(t[u].left != NIL) deg++;
    if(t[u].left != NIL) deg++;
    printf("degree = %d, ", deg);
    printf("depth = %d, ", D[u]);
    printf("height = %d, ", H[u]);
    
    if(t[u].parent == NIL)
    {
        printf("root\n");
    }
    else if(t[u].left == NIL && t[u].right == NIL)
    {
        printf("leaf\n");
    } 
    else
    {
         printf("internal node\n");
    }
}
int main()
{
    int n;
    cin >> n;
    int root = 0;
    
    for(int i = 0; i < n; i++) t[i].parent = NIL;
    
    for(int i = 0 ; i < n ;i++)
    {
        int v;
        int l, r;
        cin >> v >> l >> r;
        t[i].left = l;
        t[i].right = r;
        if(l != NIL) t[l].parent = v;
        if(r != NIL) t[r].parent = v;
    }
    
    for(int i = 0; i < n; i++)
    {
        if(t[i].parent == NIL) root = i;
    }
    setDepth(root, 0);
    setHeight(root);
    
    for(int i = 0; i < n; i++)
    {
        print(i);
    }
    cout << getSibling(3) << endl;
    return 0;
}

 

posted @ 2019-08-03 19:54  Artimislyy  阅读(236)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3