AtCoder Beginner Contest 240
A
#include <bits/stdc++.h>
using namespace std;
int main() {
int a, b;
scanf("%d%d", &a, &b);
if (a > b) swap(a, b);
if (b - a == 1 || b - a == 9) puts("Yes");
else puts("No");
return 0;
}
B
#include <bits/stdc++.h>
using namespace std;
int n;
int main() {
scanf("%d", &n);
set<int> s;
for (int i = 1; i <= n; i ++ ) {
int x;
scanf("%d", &x);
s.insert(x);
}
printf("%d\n", s.size());
return 0;
}
C
#include <bits/stdc++.h>
using namespace std;
int n, m;
int st[10010];
int main() {
scanf("%d%d", &n, &m);
st[0] = 1;
for (int i = 1; i <= n; i ++ ) {
int a, b;
scanf("%d%d", &a, &b);
vector<int> c(m + 10);
for (int j = 0; j <= m; j ++ )
if (st[j] == 1) {
if (j + a <= m) c[j + a] = 2;
if (j + b <= m) c[j + b] = 2;
}
for (int j = 0; j <= m; j ++ )
if (c[j] == 2) st[j] = 1;
else st[j] = 0;
}
if (st[m] == 1) puts("Yes");
else puts("No");
return 0;
}
D
#include <bits/stdc++.h>
#define PII pair<int, int>
using namespace std;
int n, len;
int main() {
scanf("%d", &n);
vector<PII> v;
for (int i = 1; i <= n; i ++ ) {
int x;
scanf("%d", &x);
len ++;
if (v.size() == 0) v.push_back({x, 1});
else {
if (v[v.size() - 1].first == x && v[v.size() - 1].second == x - 1)
len -= x, v.pop_back();
else {
if (v[v.size() - 1].first == x) v[v.size() - 1].second ++;
else v.push_back({x, 1});
}
}
printf("%d\n", len);
}
return 0;
}
E
#include <bits/stdc++.h>
#define PII pair<int, int>
using namespace std;
const int N = 2e5 + 10, M = N * 2;
int n;
PII range[N];
int h[N], e[M], ne[M], idx, s[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void dfs(int u, int fa)
{
s[u] = 0;
int sum = 1;
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (j == fa) continue;
dfs(j, u);
s[u] += max(s[j], 1);
}
}
void dfs1(int u, int fa, int l, int r)
{
int ll = l, rr = r;
range[u].first = l, range[u].second = r;
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (j == fa) continue;
dfs1(j, u, ll, ll + max(s[j], 1) - 1);
ll += max(s[j], 1);
}
}
int main() {
scanf("%d", &n);
memset(h, -1, sizeof h);
for (int i = 1; i < n; i ++ ) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
dfs(1, -1);
dfs1(1, -1, 1, s[1]);
for (int i = 1; i <= n; i ++ )
printf("%d %d\n", range[i].first, range[i].second);
return 0;
}
F
我们可以发现,每次连续的\(y_i\)个数的值是相等的,所以我们可以一段一段的计算
\[首先定义 \quad z_i = \sum_{k=1}^{i}y_k \quad 设此段为连续的个数为n个x_i那么我们可以得到当前一段的和为 n \times x_i \\
所以可以得到 B_{z_{i-1}+n} = B_{z_{i-1}} + n \times x_i \\
同理可以得到A_{z_{i-1}+n} = A_{z_{i-1}} + \sum_{k=1}^{n} B_{z_{i-1}+k} \\
A_{z_{i-1}+n} = A_{z_{i-1}} + \sum_{k=1}^{n}(B_{z_{i-1}} + k \times x_i) \\
A_{z_{i-1}+n} = A_{z_{i-1}} + B_{z_{i-1}} \times n + x_i \times \frac{n \times (n + 1)}{2}
\]
至此可以发现每段的值都可以由前面一段得到,而观察上式发现是一个关于n的一元二次方程
\[A_{z_{i-1}+n} = A_{z_{i-1}} + B_{z_{i-1}} \times n + x_i \times \frac{n \times (n + 1)}{2} \\
如果前一段的B_{z_{i-1}} > 0时,而x_i<0时,发现上式是一个关于n的一元二次方程当n = \frac{b}{-2a}取得最大值
\]
#include <bits/stdc++.h>
#define LL long long
using namespace std;
int T, n, m;
void solve()
{
scanf("%d%d", &n, &m);
LL a = 0, b = 0, ans = -1e18; //a表示A的前缀和,b表示B的前缀和
for (int i = 1; i <= n; i ++ ) {
LL x, y;
scanf("%lld%lld", &x, &y);
ans = max(ans, a + b + x); //当a = 0, b = 0, 所有数都为负数时,可以取得最大值为第一个数
if (b > 0 && b + x * y < 0) {
LL k = b / -x;
ans = max(ans, a + b * k + k * (k + 1) / 2 * x); //最大值在对称轴取得
}
a += b * y + (y + 1) * y / 2 * x;
b += x * y;
ans = max(ans, a);
}
printf("%lld\n", ans);
}
int main() {
scanf("%d", &T);
while (T -- ) solve();
return 0;
}