洛谷P1003 [NOIP2011 提高组] 铺地毯
[NOIP2011 提高组] 铺地毯
题目描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 \(n\) 张地毯,编号从 \(1\) 到 \(n\)。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 \(n + 2\) 行。
第一行,一个整数 \(n\),表示总共有 \(n\) 张地毯。
接下来的 \(n\) 行中,第 \(i+1\) 行表示编号 \(i\) 的地毯的信息,包含四个整数 \(a ,b ,g ,k\),每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 \((a, b)\) 以及地毯在 \(x\) 轴和 \(y\) 轴方向的长度。
第 \(n + 2\) 行包含两个整数 \(x\) 和 \(y\),表示所求的地面的点的坐标 \((x, y)\)。
输出格式
输出共 \(1\) 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1。
样例 #1
样例输入 #1
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
样例输出 #1
3
样例 #2
样例输入 #2
3
1 0 2 3
0 2 3 3
2 1 3 3
4 5
样例输出 #2
-1
提示
【样例解释 1】
如下图,\(1\) 号地毯用实线表示,\(2\) 号地毯用虚线表示,\(3\) 号用双实线表示,覆盖点 \((2,2)\) 的最上面一张地毯是 \(3\) 号地毯。

【数据范围】
对于 \(30\%\) 的数据,有 \(n \le 2\)。
对于 \(50\%\) 的数据,\(0 \le a, b, g, k \le 100\)。
对于 \(100\%\) 的数据,有 \(0 \le n \le 10^4\), \(0 \le a, b, g, k \le {10}^5\)。
noip2011 提高组 day1 第 \(1\) 题。
分析
这里可以用一个结构体存放所有毯子的信息,然后枚举
注意
不可用二维数组判断,数据范围1e5,会MLE
AC CODE
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
struct node{
int x,y,g,h;
}a[N];
int main(){
int n;
cin>>n;
for(int i = 0;i<n;++i)cin>>a[i].x>>a[i].y>>a[i].g>>a[i].h;
int p,q;cin>>p>>q;
int id;
for(int i = n-1;~i;--i)//这里~i就是i>=0
if(p>=a[i].x&&p<=a[i].x+a[i].g&&q>=a[i].y&&q<=a[i].y+a[i].h){
id = i;break;
}
cout<<id+1;
}

浙公网安备 33010602011771号