深度学习——02、深度学习入门——卷积神经网络
神经网络框架

卷积层详解

卷积神经网络组成
1.输入层(INPUT)
2.卷积层(CONV)
3.激活函数(RELU)
4.池化层(POOL)
5.全连接层(FC)
卷积计算流程

将image划分为一个一个的小区域,然后filter在每一个小块上进行特征提取,找出一个能够代表这个区域的值,image经过卷积之后生成一个特征图,特征图上对应image每一个小区域

filter可以有多个,可以指定数量,将不同的filter提取出来的特征图压缩到一起就得到了卷积之后的结果。

示例:6层filter对image进行特征提取。

卷积操作不是只能在输入的图像基础上进行卷积,还能在卷积之后的结果上再进行卷积。



卷积核参数分析

卷积参数共享原则
池化层
池化层是对特征图起作用的层,对特征图进行一个压缩的操作。
Pooling layer

MAX POOLING


浙公网安备 33010602011771号