Luogu P4313 文理分科
最小割
这道题运用了最小割最常用的一种用法:集合划分。
因为源汇最小割即就是将源汇划分到不同的集合,那么最简单的应用就是最小代价划分集合了。
本题中,题意是将 \(n\cdot m\) 个学生划分文理科,每人只能选一科且选不同的科有不同的收益,求最大收益,符合集合划分的条件,就理所当然地想到了最小割。
至于求最大收益,不妨就先将所有收益加起来,再减去最小代价(即最小割),便是最大收益了。
但是本题的难点在于,如果相邻同学选一样的(以下称为一个组合),还会有额外收益。
于是我们需要加一点限制,使得我们在最后求最小割的时候,对于每一个组合:要么满足组合内的所有成员,都在同一个子集(包含源点的子集 \(S\) 或包含汇点的子集 \(T\)),且那条代表额外收益的边不会被割掉;要么不满足组合内是所有成员,都在同一个子集,且那条代表额外收益的边被割掉了。
于是大致见图思路出来了:
-
对于每一个点(每一位同学)\(i\):
连 \(s\rightarrow i\) 容量为 \(art_i\);
连 \(i\rightarrow t\) 容量为 \(science_i\)。
-
对于每一个组合 \(i\),新建两个点 \(x_i,y_i\):
连 \(s\rightarrow x_i\) 容量为 \(same\_art_i\);
连 \(y_i\rightarrow t\) 容量为 \(same\_science_i\)。
对于该组合内的每个点(即该点+上下左右四个点)\(j\in i\):
连 \(x_i\rightarrow j\) 容量为 \(+\infty\);
连 \(j\rightarrow y_i\) 容量为 \(+\infty\)。
这里解释一下这么连的原因:
如果要 \(s\rightarrow x_i\) 这条边(即要这个组合所有同学都选文科的收益),那么就不割这条边。但是,又因为 \(x_i\) 向这个组合内每个点都连了一条 \(+\infty\) 的边,所以这些边便不会被割掉。那么为了防止 \(s\) 与 \(t\) 联通,自然就会割掉这个组合内每个点与 \(t\) 连的边(即都不选理科)。反之都选理科亦然。
如果放弃这个组合(即这个组合内每个成员选的科不都一样),那么就会割掉 \(s\rightarrow x_i\) 和 \(y_i\rightarrow t\) 这两条边,那么就相当于这个组合内的每个点都互相独立了,可以任意选科。
注:不能将 \(x_i\) 与 \(y_i\) 合并成一个点来连边,这样会使上述放弃组合的情况无法达到(即无法破坏组合独立选择)。
Code
#include<bits/stdc++.h>
//#define int long long
#define pair pair<int,int>
using namespace std;
inline void end()
{
puts("");
system("pause");
}
inline int read()
{
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*f;
}
const int N=3e4+4,M=5e5+5;
int n,m,nm,s,t,ans,Maxflow;
int first[N],nex[M],to[M],w[M],num=1;
inline void add(int u,int v,int val)
{
nex[++num]=first[u];
first[u]=num;
to[num]=v;
w[num]=val;
}
inline void Add(int u,int v,int val)
{
add(u,v,val);
add(v,u,0);
}
namespace ISAP
{
int dep[N],gap[N],cur[N];
void bfs()
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
queue<int> q;
q.push(t);
dep[t]=0;gap[0]=1;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=first[u];i;i=nex[i])
{
int v=to[i];
if(dep[v]!=-1) continue;
dep[v]=dep[u]+1;
gap[dep[v]]++;
q.push(v);
}
}
}
inline int dfs(int u,int in)
{
if(u==t) return in;
int out=0;
for(int i=cur[u];i;i=nex[i])
{
cur[u]=i;
int v=to[i];
if(!w[i]||dep[v]!=dep[u]-1) continue;
int res=dfs(v,min(w[i],in-out));
w[i]-=res;
w[i^1]+=res;
out+=res;
if(in==out) return out;
}
gap[dep[u]]--;
if(!gap[dep[u]]) dep[s]=3*nm+3;
dep[u]++;
gap[dep[u]]++;
return out;
}
void work()
{
bfs();
while(dep[s]<3*nm+2)
{
memcpy(cur,first,sizeof(first));
Maxflow+=dfs(s,1e9);
}
}
}
inline int id(int i,int j){return (i-1)*m+j;}
int dx[5]={-1,0,1,0,0},dy[5]={0,-1,0,1,0};
int main()
{
//1|nm|nm|nm|1
//源点|每个组合"选文"|每个座位|每个组合"选理"|汇点
n=read(),m=read(),nm=n*m;
s=0,t=3*nm+1;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
int val=read();ans+=val;
Add(s,id(i,j)+nm,val);//s -> i
}
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
int val=read();ans+=val;
Add(id(i,j)+nm,t,val);//i -> t
}
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
int val=read();ans+=val;
Add(s,id(i,j),val);//s -> x_i
}
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j)
{
int val=read();ans+=val;
Add(id(i,j)+2*nm,t,val);//y_i -> t
for(int k=0;k<5;++k)
{
int x=i+dx[k],y=j+dy[k];
if(x<1||y<1||x>n||y>m) continue;
Add(id(i,j),id(x,y)+nm,1e9);//x_i -> j
Add(id(x,y)+nm,id(i,j)+2*nm,1e9);//j -> y_i
}
}
}
ISAP::work();
printf("%d",ans-Maxflow);
end();
return 0;
}

该文不被密码保护。
浙公网安备 33010602011771号