BZOJ1426: 收集邮票

题面传送门

令$f[i]$表示还剩$i$种模板没有收集到,期望还需要买几个模板

$f[i]= \frac{n-i}{n} \times f[i] + \frac{i}{n} \times f[i-1] +1$

解得:$f[i]=f[i-1]+n/i$

令$dp[i]$表示有$i$种模板没收集到,期望需要多少钱买模板

$dp[i]= \frac{n-i}{n} \times (dp[i]+f[i]+1) + \frac{i}{n} \times (dp[i-1]+f[i-1]+1)$

解得:$dp[i]=dp[i-1]+f[i-1]+ \frac{n-i}{i} \times f[i] +\frac{n}{i} $

之前一直没有理解期望的题,今天才明白一点。

f[i]表示是还有i种没买的情况下还需要买的模板的期望。

还有i种没买的情况下,有i/n的概率还是还有i种没买,也就是i/n的概率是需要解决有i种没买的问题,有n-i/n的概率是买到了这i种之外的模板,也就是只有i-1种没买了,需要解决i-1种没买的问题,由i-1种没买的答案转移过来。

我有p的概率转移到下一个状态,也就是我的答案有p的概率是由下一个状态的答案转移来的。

其实这让我想起了yyh的一句话,刚学最小割建模的时候yyh说过,不要考虑留下的是什么,只在意割去的是什么。

逻辑思维能力极为低下宸,终于又明白了一点东西。

Achen思维太僵了。

 

posted @ 2018-03-14 20:57  啊宸  阅读(108)  评论(0编辑  收藏  举报