【16.56%】【codeforces 687B】Remainders Game
time limit per test1 second 
memory limit per test256 megabytes 
inputstandard input 
outputstandard output 
Today Pari and Arya are playing a game called Remainders.
Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value  . There are n ancient numbers c1, c2, …, cn and Pari has to tell Arya
 . There are n ancient numbers c1, c2, …, cn and Pari has to tell Arya   if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value
 if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value  for any positive integer x?
 for any positive integer x?
Note, that   means the remainder of x after dividing it by y.
means the remainder of x after dividing it by y.
Input 
The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.
The second line contains n integers c1, c2, …, cn (1 ≤ ci ≤ 1 000 000).
Output 
Print “Yes” (without quotes) if Arya has a winning strategy independent of value of x, or “No” (without quotes) otherwise.
Examples 
input 
4 5 
2 3 5 12 
output 
Yes 
input 
2 7 
2 3 
output 
No 
Note 
In the first sample, Arya can understand   because 5 is one of the ancient numbers.
 because 5 is one of the ancient numbers.
In the second sample, Arya can’t be sure what  is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
  is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
【题解】 
 
题意: 
让你猜x % k 的值 
但是只告诉你k以及一系列x % ci; 
做法: 
根据中国剩余定理: 
如果知道了 
x % a; 
x % b; 
x % c; 
x % d; 
···· 
且a,b,c,d互质; 
那么x % (abcd)就可以确定了; 
那么因为要求x % k 
所以对k进行质数分解; 
各个质数肯定是互质的; 
分解成k = p1^k1*p2^k2…pn^kn的形式 
然后你还得知道这么一个东西 
如果 
a 是 b的倍数,即a %b==0 
那么 
x % a = y1 
x % b = y2 
那么y2 = y1 % b; 
即 
x = t1*a+ y1 ···① 
x = t2*b + y2 
因为a是b的倍数 
所以①式总可以写成 
x = t1*t3*b + y1的形式 
显然y1 再对b取模就是y2了; 
回到质数分解后 
分解成k = p1^k1*p2^k2…pn^kn的形式 
我们想知道 
x % p1^k1 
x % p2^k2 
…. 
x % pn^kn 
这样我们就能知道x %k了 
根据上面的分析,我们只要在所给的ci里面找pi^ki的倍数就好了; 
如果对于所有的t∈[1..n]总有数字ci是pt^kt的倍数; 
因为如果ci是pt^kt的倍数,则x % ci知道了,相应的x%(pt^kt)按照上面的分析也能知道了->(x%ci) % (pt^kt) 
既然知道了所有的x%pt^kt 
那么就能求出x%k了; 
#include <cstdio>
int n, k,cnt = 0;
int num[10000];
bool cover[10000] = { 0 };
int main()
{
    //freopen("F:\\rush.txt", "r", stdin);
    scanf("%d%d", &n, &k);
    for (int i = 2;i <= k;i++)
        if ((k%i) == 0)
        {
            int now = 1;
            while ((k%i) == 0)
            {
                now = now*i;
                k /= i;
            }
            num[++cnt] = now;//存的是p1^k1..pcnt^kcnt
        }
    for (int i = 1; i <= n; i++)
    {
        int x;
        scanf("%d", &x);
        for (int j = 1; j <= cnt; j++)
            if (x % num[j] == 0)//如果是的x%pt^kt倍数,那么x%pt^kt就能求出来了
                cover[j] = true;
    }
    for (int j = 1;j <= cnt;j++)
        if (!cover[j])
        {
            puts("NO");
            return 0;
        }
    puts("YES");
    return 0;
}
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号