二项式反演

\(f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\),则 \(g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i)\)

证明:

\[g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i)\\ =\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}\sum_{j=0}^i\binom{i}{j}g(j)\\ =\sum_{i=0}^n(-1)^{n-i}\sum_{j=0}^i\binom{n}{i}\binom{i}{j}g(j)\\ \]

由三项式版恒等式

\[\binom{r}{m}\binom{m}{k}=\binom{r}{k}\binom{r-k}{m-k} (m,k\in Z) \]

\[g(n)=\sum_{i=0}^n(-1)^{n-i}\sum_{j=0}^i\binom{n}{i}\binom{i}{j}g(j)\\ =\sum_{i=0}^n(-1)^{n-i}\sum_{j=0}^i\binom{n}{j}\binom{n-j}{i-j}g(j)\\ =\sum_{i=0}^n\sum_{j=0}^i(-1)^{n-i}\binom{n}{j}\binom{n-j}{i-j}g(j)\\ =\sum_{j=0}^ng(j)\binom{n}{j}\sum_{i=j}^n(-1)^{n-i}\binom{n-j}{i-j}\\ =\sum_{j=0}^ng(j)\binom{n}{j}\sum_{i=0}^{n-j}(-1)^{n-j-i}\binom{n-j}{i}\\ \]

而又有

\[\sum_{i=0}^n(-1)^{i}\binom{n}{i}=[n=0] \]

所以

\[g(n)=\sum_{j=0}^ng(j)\binom{n}{j}\sum_{i=0}^{n-j}(-1)^{n-j-i}\binom{n-j}{i}\\ =g(n)\binom{n}{n}\\ =g(n) \]

证毕。

posted @ 2020-08-11 23:20  AE酱  阅读(140)  评论(0编辑  收藏  举报