DP(4)
Description
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
| 0 | −2 | −7 | 0 | 
| 9 | 2 | −6 | 2 | 
| −4 | 1 | −4 | 1 | 
| −1 | 8 | 0 | −2 | 
is in the lower-left-hand corner and has the sum of 15.
Input
The input consists of an N ×  N array of integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by N 2 integers separated by white-space (newlines and spaces). These N 2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [−127, 127].
Output
The output is the sum of the maximal sub-rectangle.
Sample Input
| input | output | 
|---|---|
| 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 | 15 | 
#include<cstdio> #include<algorithm> const int INF = 0x3f3f3f3f; const int maxn = 105; using namespace std; int a[maxn][maxn]; int dp[maxn][maxn][maxn]; int main(){ int n; scanf("%d",&n); for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) scanf("%d",&a[i][j]); int ans = -INF; for(int i = 1; i <= n; i++)//枚举每列 for(int j = 1; j <= n; j++){//枚举此列的点 int sum = 0; for(int k = j; k >= 1; k--){//枚举该点与其他点的构成的矩形 sum += a[i][k];//该矩形总值 dp[i][k][j] = max(sum,sum+dp[i-1][k][j]);//加上相邻列构成的矩形的总值,进行比较。 ans = max(dp[i][k][j],ans);//得出max总值。 } } printf("%d\n",ans); }
 
                    
                     
                    
                 
                    
                
 
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号