*DP(2)
| Time Limit: 1000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if its K-based notation doesn’t contain two successive zeros. For example:
- 1010230 is a valid 7-digit number;
- 1000198 is not a valid number;
- 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing N digits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.
Input
The numbers N and K in decimal notation separated by the line break.
Output
The result in decimal notation.
Sample Input
| input | output |
|---|---|
2 10 |
90 |
Source
Problem Source:
USU Championship 1997if(a[i-1] == 0) a[i-2] != 0,a[i-2]就有k-1种选择!
else a[i-1] != 0,此时 a[i-1] 也只有k-1种选择!
所以,a[i] = (k-1)*(a[i-1] + a[i-2]);
#include<cstdio> using namespace std; long long a[20]; int main(){ long long n,k; while(~scanf("%I64d%I64d",&n,&k)){ a[1] = k-1; a[2] = (k-1)*k; for(int i = 3; i <= n; i++) a[i] = (k-1)*(a[i-1] + a[i-2]); printf("%I64d\n",a[n]); } return 0; }

浙公网安备 33010602011771号