山东13年省赛 Aliceand Bob
Problem F: Alice and Bob
Description
Alice and Bob like playing games very much.Today, they introduce a new game.
There is a polynomial like this: (a0*x^(2^0)+1) * (a1 * x^(2^1)+1)*.......*(an-1 * x^(2^(n-1))+1). Then Alice ask Bob Q questions. In the expansion of the Polynomial, Given an integer P, please tell the coefficient of the x^P.
Can you help Bob answer these questions?
Input
The first line of the input is a number T, which means the number of the test cases.
For each case, the first line contains a number n, then n numbers a0, a1, .... an-1 followed in the next line. In the third line is a number Q, and then following Q numbers P.
1 <= T <= 20
1 <= n <= 50
0 <= ai <= 100
Q <= 1000
0 <= P <= 1234567898765432
Output
For each question of each test case, please output the answer module 2012.
Sample Input
1 2 2 1 2 3 4
Sample Output
2 0
HINT
The expansion of the (2*x^(2^0) + 1) * (1*x^(2^1) + 1) is 1 + 2*x^1 + 1*x^2 + 2*x^3
解题思路:完全靠位运算即可,可记住这个规律。
求多项式相乘展开式中x的某一指数的系数。
(a0*x^(2^0)+1) * (a1 * x^(2^1)+1)*.......*(an-1 * x^(2^(n-1))+1)给定这个式子,观察x的指数,2^0 2^1 2^2 。。很容易联想到二进制。
后来发现有规律,展开式中没有指数相同的两项,也就是说不能合并公因式。而某一x指数的系数化为二进制以后就可以找到规律了。
比如 求指数为13的系数,把13化为二进制 1 1 0 1 从右到左分别对应 a0 a1 a 2 a3 ,那么所求系数就是 a0 * a2 * a 3
再举例说明:
1 #include <iostream> 2 #include <stack> 3 #include <string.h> 4 using namespace std; 5 int a[51]; 6 int t,n,q; 7 long long p; 8 9 int main() 10 { 11 cin>>t;while(t--) 12 { 13 cin>>n; 14 for(int i=0;i<n;i++) 15 cin>>a[i]; 16 cin>>q; 17 while(q--) 18 { 19 stack<int>s; 20 cin>>p; 21 int result=1; 22 int cnt=-1; //这里使用了-1,为了方便,因为a数组是从0开始的 23 int yu; 24 while(p) //把数化为二进制存到栈中 25 { 26 cnt++; 27 yu=p%2; 28 s.push(yu); 29 p/=2; 30 } 31 if(cnt>n-1) //当数的二进制位数大于n时,不存在直接输出0 32 { 33 cout<<0<<endl; 34 continue; 35 } 36 else 37 { 38 while(!s.empty()) 39 { 40 if(s.top()==1) 41 { 42 result*=a[cnt];//取数相乘 43 if(result>2012) 44 result%=2012; 45 } 46 s.pop(); 47 cnt--; 48 } 49 } 50 cout<<result<<endl; 51 } 52 } 53 return 0; 54 }

浙公网安备 33010602011771号