POJ 2318 TOYS (点与线段叉积+二分)

TOYS
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 11098 Accepted: 5319

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.

For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
 5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1

0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
 

题目大意:有一个矩形盒子,盒子里会有一些木块线段,并且这些线段是按照顺序给出的,有n条线段,把盒子分层了n+1个区域,然后有m个玩具,这m个玩具的坐标是已知的,问最后每个区域有多少个玩具

解题思路:因为线段是有序给出,所以不用排序,判断某个点在哪个区域,采用二分法,将某个点和线段的叉积来判断这个点是在线的左边或者右边,根据这个来二分找出区域

代码:

 

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h>

using namespace std;
struct Point
{
    int x,y;
    Point(){}
    Point(int _x,int _y)
    {
        x = _x;y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x,y - b.y);
    }
    int operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
    int operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
};
struct Line
{
    Point s,e;
    Line(){}
    Line(Point _s,Point _e)    
    {
        s = _s;e = _e;
    }
};

int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
    return (p1-p0)^(p2-p0);
}
const int MAXN = 5050;
Line line[MAXN];
int ans[MAXN];
int main()
{
    //freopen("in.txt","r",stdin);
    
//freopen("out.txt","w",stdout);
    int n,m,x1,y1,x2,y2;
    bool first = true;
    while(scanf("%d",&n) == 1 && n)
    {
        if(first)first = false;
        else printf("\n");
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        int Ui,Li;
        for(int i = 0;i < n;i++)
        {
            scanf("%d%d",&Ui,&Li);
            line[i] = Line(Point(Ui,y1),Point(Li,y2));
        }
        line[n] = Line(Point(x2,y1),Point(x2,y2));
        int x,y;
        Point p;
        memset(ans,0,sizeof(ans));
        while( m-- )
        {
            scanf("%d%d",&x,&y);
            p = Point(x,y);
            int l = 0,r = n;
            int tmp;
            while( l <= r)
            {
                int mid = (l + r)/2;
                if(xmult(p,line[mid].s,line[mid].e) < 0)//点p在线段的左边
                {
                    tmp = mid;
                    r = mid - 1;
                }
                else l = mid + 1;
            }
            ans[tmp]++;
        }
        for(int i = 0; i <= n;i++)
            printf("%d: %d\n",i,ans[i]);
    }
    return 0;
}
View Code

 

posted @ 2015-02-12 18:47  Doli  阅读(154)  评论(0)    收藏  举报