celery的使用

 

Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理

celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和任务执行结果存储(task result store)组成

 

安装celery模块

pip install celery

 

 

# 1 异步任务框架,执行异步任务,执行延迟任务,执行定时任务
# 2 Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.
# 3 使用
-pip install celery
# 4 两种结构

 

 

 

 

#1  只写一个py文件,内容如下celery_task.py:

# broker='redis://:123456@127.0.0.1:6379/1'
# :123456@是密码(没有就不写) 1是redis中库1的位置
from celery import Celery
broker='redis://127.0.0.1:6379/1'  #broker任务队列
backend='redis://127.0.0.1:6379/2'   # 结构存储,执行完的结果存在这
app=Celery(__name__,broker=broker,backend=backend)
#添加任务(使用这个装饰器装饰,@app.task)
@app.task
def add(x,y):
    print(x,y)
    return x+y
# 2启动worker
        # 用命令来执行
        # 非windows
        # 命令:celery worker -A celery_task -l info
        # windows:
        # pip3 install eventlet
        # celery worker -A celery_task -l info -P eventlet
        
# 3 添加任务
    from celery_task import add
    # add(3,4)  # 直接执行,不会被添加到broker中
    ret=add.delay(5,4)  #想broker中添加一个任务
    print(ret)
# 4 查看任务执行结果
    from celery_task import app
    from celery.result import AsyncResult
    id = '3e397fd7-e0c1-4c5c-999c-2655a96793bb'
    if __name__ == '__main__':
        async = AsyncResult(id=id, app=app)
        if async.successful():
            result = async.get()
            print(result)
        elif async.failed():
            print('任务失败')
        elif async.status == 'PENDING':
            print('任务等待中被执行')
        elif async.status == 'RETRY':
            print('任务异常后正在重试')
        elif async.status == 'STARTED':
            print('任务已经开始被执行')
View Code

 

2.包结构

#1 新建一个包,叫celery_task
    -celery_task
        -__init__.py
        -celery.py
        -task1.py
        -task2.py
# 2 celery.py
    from celery import Celery
    broker='redis://127.0.0.1:6379/1'  #broker任务队列
    backend='redis://127.0.0.1:6379/2'# 结构存储,执行完的结果存在这
    app=Celery(__name__,broker=broker,backend=backend,include=['celery_task.task1','celery_task.task2'])
    
# 3 task1.py
    from .celery import app
    @app.task
    def add(x,y):
        print(x,y)
        return x+y
# 4 task2.py
    from .celery import app
    @app.task
    def mutile(x,y):
        print(x,y)
        return x*y
# 5 添加任务(异步任务,延迟任务)
    from celery_task.task1 import add
    from celery_task.task2 import mutile
    #  提交异步
    ret=add.delay(6,7)
    print(ret)  # 2d4ad592-9548-4c7c-8df4-7f8583e8a1b1
    
    # 提交延迟任务
    from datetime import datetime, timedelta
    # 需要utc时间
    eta=datetime.utcnow() + timedelta(seconds=10)
    ret=add.apply_async(args=(240, 50), eta=eta)
    print(ret)

# 6获取结果同上
View Code

3.定时执行任务  此处的ret打印出来的结果就是id号

#1 celery.py

    from celery import Celery
    broker='redis://127.0.0.1:6379/1'  #broker任务队列
    backend='redis://127.0.0.1:6379/2'   # 结构存储,执行完的结果存在这
    app=Celery(__name__,broker=broker,backend=backend,include=['celery_task.task1','celery_task.task2'])
    # 执行定时任务
    # 时区
    app.conf.timezone = 'Asia/Shanghai'
    # 是否使用UTC
    app.conf.enable_utc = False
    # 任务的定时配置
    from datetime import timedelta
    from celery.schedules import crontab
    app.conf.beat_schedule = {
        'add-task': {
            'task': 'celery_task.task1.add',
            # 'schedule': timedelta(seconds=3),
            'schedule': crontab(hour=8, day_of_week=1),  # 每周一早八点
            'args': (300, 150),
        }
    }
    
# 2 启动worker,启动beat
    -celery worker -A celery_task -l info -P eventlet
    -celery beat -A celery_task -l info
View Code

 

posted @ 2024-02-08 21:28  朱饱饱  阅读(25)  评论(0)    收藏  举报