随笔分类 -  贝叶斯

摘要:昨天实现了一个基于贝叶斯定理的的文本分类,贝叶斯定理假设特征属性(在文本中就是词汇)对待分类项的影响都是独立的,道理比较简单,在中文分类系统中,分类的准确性与分词系统的好坏有很大的关系,这段代码也是试验不同分词系统才顺手写的一个。 试验数据用的sogou实验室的文本分类样本,一共分为9个类别,每个类别文件夹下大约有2000篇文章。由于文本数据量确实较大,所以得想办法让每次训练的结果都能保存起来,以便于下次直接使用,我这里使用序列化的方式保存在硬盘。 训练代码如下: 1 /** 2 * 训练器 3 * 4 * <a href="http://my.oschina.net/a... 阅读全文
posted @ 2013-05-28 10:35 94julia 阅读(1229) 评论(0) 推荐(0)
摘要:贝叶斯推断及其互联网应用作者:阮一峰一、什么是贝叶斯推断贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正。正是因为它的主观性太强,曾经遭到许多统计学家的诟病。贝叶斯推断需要大量的计算,因此历史上很长一段时间,无法得到广泛应用。只有计算机诞生以后 阅读全文
posted @ 2013-05-28 10:22 94julia 阅读(461) 评论(0) 推荐(0)
摘要:概率论只不过是把常识用数学公式表达了出来。——拉普拉斯记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时;有一次,在书店看到一本书,名叫贝叶斯方法。当时数学系的课程还没有学到概率统计。我心想,一个方法能够专门写出一本书来,肯定很牛逼。后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法。——题记目录0. 前言1. 历史 1.1 一个例子:自然语言的二义性 1.2 贝叶斯公式2. 拼写纠正3. 模型比较与贝叶斯奥卡姆剃刀 3.1 再访拼写纠正 3.2 模型比较理论(Model Comparasion)与贝叶斯奥卡姆剃刀(Bayesian Occam’s Razo 阅读全文
posted @ 2013-04-30 21:16 94julia 阅读(202) 评论(0) 推荐(0)