Codeforces Round #600 (Div. 2) E. Antenna Coverage

Codeforces Round #600 (Div. 2) E. Antenna Coverage(dp)

题目链接

题意:

m个Antenna,每个Antenna的位置是\(x_i\),分数是\(s_i\),覆盖范围是\([x_i - s_i; x_i + s_i]\),每个硬币可以使一个Antenna的\(s_i\)+1,求覆盖整个\([1;m]\)的最少硬币

思路:

\(f[pos][0]\)表示\([1,pos]\)没有被覆盖还要花费的最少硬币,\(f[pos][1]\)表示\([1,pos]\)被覆盖的最小花费硬币,对于每个\(pos\)枚举Antenna,有以下这几种情况

  • \(pos\)\(x_i\)的右边,且Antenna\(i\)扩展到\(pos\)时的左边已经有Antenna覆盖,则Antenna\(i\)扩展到\(pos\)\(f[pos][1] = min(f[pos][1],f[max(2*x[j]-pos-1,0)][1]+max(pos-x[j]-s[j],0));\)
  • \(pos\)\(x_i\)的右边,且Antenna\(i\)扩展到\(pos\)时的左边无Antenna覆盖,则Antenna\(i\)扩展到\(pos\)\(f[pos][1] = min(f[pos][1],f[max(2*x[j]-pos-1,0)][0]+1+max(pos-x[j]-s[j],0));\)
  • \(pos\)\(x_i\)的左边,则只需扩展\(x_i\)的左侧\(f[pos][1] = min(f[pos][1],min(f[max(x[j]-s[j]-1,0)][1],f[max(x[j]-s[j],0)][0]));\)

\(f[i][1]\)\(f[i][0]\)的区别是若左边已经有Antenna覆盖了,就可以少去覆盖\([i-1,i]\)的花费

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 200100;
int f[N][2],s[N],x[N];
int main()
{
	int n,m;
	cin >> n >> m;
	for (int i = 1; i <= m; i++) f[i][0]=i-1,f[i][1]=1<<30;
	f[0][1] = 0;
	for (int i = 1; i <= n; i++)
	 {
	 	cin >> x[i] >> s[i];
	 }
	for (int i = 1; i<= m; i++)
	for (int j = 1; j <= n;j++)
	 if ( i >= x[j])
	 {
	 	f[i][1] = min(f[i][1],f[max(2*x[j]-i-1,0)][1]+max(i-x[j]-s[j],0));
	 	f[i][1] = min(f[i][1],f[max(2*x[j]-i-1,0)][0]+1+max(i-x[j]-s[j],0));
	 }
	 else 
	 {
	   f[i][1] = min(f[i][1],f[max(x[j]-s[j]-1,0)][1]);
	   f[i][1] = min(f[i][1],f[max(x[j]-s[j],0)][0]);
     }
	cout << f[m][1] << endl;
} 
posted @ 2019-11-17 09:53  7osen  阅读(445)  评论(7)    收藏  举报