Python操作 RabbitMQ、Memcache
Memcached
Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。Memcached基于一个存储键/值对的hashmap。其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信。
Memcached安装和基本使用
Memcached安装:
wget http://memcached.org/latest
tar -zxvf memcached-1.x.x.tar.gz
cd memcached-1.x.x
./configure && make && make test && sudo make install
PS:依赖libevent
yum install libevent-devel
apt-get install libevent-dev
启动Memcached
memcached -d -m 10 -u root -l 10.211.55.4 -p 12000 -c 256 -P /tmp/memcached.pid
参数说明:
-d 是启动一个守护进程
-m 是分配给Memcache使用的内存数量,单位是MB
-u 是运行Memcache的用户
-l 是监听的服务器IP地址
-p 是设置Memcache监听的端口,最好是1024以上的端口
-c 选项是最大运行的并发连接数,默认是1024,按照你服务器的负载量来设定
-P 是设置保存Memcache的pid文件
Memcached命令
存储命令: set/add/replace/append/prepend/cas 获取命令: get/gets 其他命令: delete/stats..
Python操作Memcached
安装API
|
1
2
|
python操作Memcached使用Python-memcached模块下载安装:https://pypi.python.org/pypi/python-memcached |
1、第一次操作
|
1
2
3
4
5
6
|
import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)mc.set("foo", "bar")ret = mc.get('foo')print ret |
Ps:debug = True 表示运行出现错误时,现实错误信息,上线后移除该参数。
2、天生支持集群
python-memcached模块原生支持集群操作,其原理是在内存维护一个主机列表,且集群中主机的权重值和主机在列表中重复出现的次数成正比
|
1
2
3
4
5
6
7
|
主机 权重 1.1.1.1 1 1.1.1.2 2 1.1.1.3 1那么在内存中主机列表为: host_list = ["1.1.1.1", "1.1.1.2", "1.1.1.2", "1.1.1.3", ] |
如果用户根据如果要在内存中创建一个键值对(如:k1 = "v1"),那么要执行一下步骤:
- 根据算法将 k1 转换成一个数字
- 将数字和主机列表长度求余数,得到一个值 N( 0 <= N < 列表长度 )
- 在主机列表中根据 第2步得到的值为索引获取主机,例如:host_list[N]
- 连接 将第3步中获取的主机,将 k1 = "v1" 放置在该服务器的内存中
代码实现如下:
|
1
2
3
|
mc = memcache.Client([('1.1.1.1:12000', 1), ('1.1.1.2:12000', 2), ('1.1.1.3:12000', 1)], debug=True)mc.set('k1', 'v1') |
3、add
添加一条键值对,如果已经存在的 key,重复执行add操作异常
|
1
2
3
4
5
6
7
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)mc.add('k1', 'v1')# mc.add('k1', 'v2') # 报错,对已经存在的key重复添加,失败!!! |
4、replace
replace 修改某个key的值,如果key不存在,则异常
|
1
2
3
4
5
6
7
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)# 如果memcache中存在kkkk,则替换成功,否则一场mc.replace('kkkk','999') |
5、set 和 set_multi
set 设置一个键值对,如果key不存在,则创建,如果key存在,则修改
set_multi 设置多个键值对,如果key不存在,则创建,如果key存在,则修改
|
1
2
3
4
5
6
7
8
9
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)mc.set('key0', 'wupeiqi')mc.set_multi({'key1': 'val1', 'key2': 'val2'}) |
6、delete 和 delete_multi
delete 在Memcached中删除指定的一个键值对
delete_multi 在Memcached中删除指定的多个键值对
|
1
2
3
4
5
6
7
8
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)mc.delete('key0')mc.delete_multi(['key1', 'key2']) |
7、get 和 get_multi
get 获取一个键值对
get_multi 获取多一个键值对
|
1
2
3
4
5
6
7
8
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)val = mc.get('key0')item_dict = mc.get_multi(["key1", "key2", "key3"]) |
8、append 和 prepend
append 修改指定key的值,在该值 后面 追加内容
prepend 修改指定key的值,在该值 前面 插入内容
|
1
2
3
4
5
6
7
8
9
10
11
12
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)# k1 = "v1"mc.append('k1', 'after')# k1 = "v1after"mc.prepend('k1', 'before')# k1 = "beforev1after" |
9、decr 和 incr
incr 自增,将Memcached中的某一个值增加 N ( N默认为1 )
decr 自减,将Memcached中的某一个值减少 N ( N默认为1 )
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True)mc.set('k1', '777')mc.incr('k1')# k1 = 778mc.incr('k1', 10)# k1 = 788mc.decr('k1')# k1 = 787mc.decr('k1', 10)# k1 = 777 |
10、gets 和 cas
如商城商品剩余个数,假设改值保存在memcache中,product_count = 900
A用户刷新页面从memcache中读取到product_count = 900
B用户刷新页面从memcache中读取到product_count = 900
如果A、B用户均购买商品
A用户修改商品剩余个数 product_count=899
B用户修改商品剩余个数 product_count=899
如此一来缓存内的数据便不在正确,两个用户购买商品后,商品剩余还是 899
如果使用python的set和get来操作以上过程,那么程序就会如上述所示情况!
如果想要避免此情况的发生,只要使用 gets 和 cas 即可,如:
|
1
2
3
4
5
6
7
8
9
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import memcachemc = memcache.Client(['10.211.55.4:12000'], debug=True, cache_cas=True)v = mc.gets('product_count')# ...# 如果有人在gets之后和cas之前修改了product_count,那么,下面的设置将会执行失败,剖出异常,从而避免非正常数据的产生mc.cas('product_count', "899") |
Ps:本质上每次执行gets时,会从memcache中获取一个自增的数字,通过cas去修改gets的值时,会携带之前获取的自增值和memcache中的自增值进行比较,如果相等,则可以提交,如果不想等,那表示在gets和cas执行之间,又有其他人执行了gets(获取了缓冲的指定值), 如此一来有可能出现非正常数据,则不允许修改。
RabbitMQ
RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。
MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。
RabbitMQ安装
安装配置epel源 $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm 安装erlang $ yum -y install erlang 安装RabbitMQ $ yum -y install rabbitmq-server
注意:service rabbitmq-server start/stop
安装API
pip install pika or easy_install pika or 源码 https://pypi.python.org/pypi/pika
使用API操作RabbitMQ
基于Queue实现生产者消费者模型
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import threading
message = Queue.Queue(10)
def producer(i):
while True:
message.put(i)
def consumer(i):
while True:
msg = message.get()
for i in range(12):
t = threading.Thread(target=producer, args=(i,))
t.start()
for i in range(10):
t = threading.Thread(target=consumer, args=(i,))
t.start()
对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列
#!/usr/bin/env python
import pika
# ######################### 生产者 #########################
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='hello')
channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!')
print(" [x] Sent 'Hello World!'")
connection.close()
#!/usr/bin/env python
import pika
# ########################## 消费者 ##########################
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='hello')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
channel.basic_consume(callback,
queue='hello',
no_ack=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
1、acknowledgment 消息不丢失
no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='10.211.55.4'))
channel = connection.channel()
channel.queue_declare(queue='hello')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_consume(callback,
queue='hello',
no_ack=False)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
2、durable 消息不丢失
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()
# make message persistent
channel.queue_declare(queue='hello', durable=True)
channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode=2, # make message persistent
))
print(" [x] Sent 'Hello World!'")
connection.close()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()
# make message persistent
channel.queue_declare(queue='hello', durable=True)
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_consume(callback,
queue='hello',
no_ack=False)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
3、消息获取顺序
默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。
channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()
# make message persistent
channel.queue_declare(queue='hello')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
queue='hello',
no_ack=False)
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
4、发布订阅

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
exchange type = fanout
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs',
type='fanout')
message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
routing_key='',
body=message)
print(" [x] Sent %r" % message)
connection.close()
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs',
type='fanout')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
channel.queue_bind(exchange='logs',
queue=queue_name)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r" % body)
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
5、关键字发送

exchange type = direct
之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
type='direct')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
severities = sys.argv[1:]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1)
for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
queue=queue_name,
no_ack=True)
channel.start_consuming()
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
type='direct')
severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',
routing_key=severity,
body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()
6、模糊匹配

exchange type = topic
在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。
- # 表示可以匹配 0 个 或 多个 单词
- * 表示只能匹配 一个 单词
发送者路由值 队列中 old.boy.python old.* -- 不匹配 old.boy.python old.# -- 匹配


浙公网安备 33010602011771号