Just for test

\[ \lim_{n \to \infty} (1+\frac{1}{n})^{n} = e\]  $$\lim_{x \to 0} \frac{\sin x}{x} = 1 $$
\begin{equation} \label{euler} e^{\pi i} + 1 = 0 \end{equation}
$x=\frac{{-b}\pm\sqrt{b^2-4ac}}{2a}$



不要在预设格式里面书写

\[\left\{ \begin{gathered}
a + b + x = 3y \hfill \\
ax - by = 1 \hfill \\
ab + xy = 2 \hfill \\
a + b = {(x + y)^2} \hfill \\
\end{gathered} \right.\]

 

$$ \textrm{LogLoss} = - \frac{1}{n} \sum_{i=1}^n \left[ y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)\right] $$

 

$  \frac{{-b}\pm\sqrt{b^2-4ac}}{2a} $ 

$ p(x)=\frac{1}{\sqrt{2\pi }}e^{-x^2} $

\begin{equation} \label{euler} e^{\pi i} + 1 = 0 \end{equation}

 \[x=\frac{{-b}\pm\sqrt{b^2-4ac}}{2a}\]

posted @ 2014-06-17 10:32  sduxxc  阅读(172)  评论(0)    收藏  举报