实验 6 指南
GoogLeNet 的图像分类
复制代码后依次运行下面命令
python3 net_model.py
python3 train.py
python3 test.py
net_model.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class InceptionA(nn.Module):
def __init__(self, in_channels):
super(InceptionA, self).__init__()
self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
def forward(self, x):
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch1x1 = self.branch1x1(x)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, dim=1)
class GoogLeNet(nn.Module):
def __init__(self):
super(GoogLeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 10, kernel_size=5)
self.incep1 = InceptionA(in_channels=10)
self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
self.incep2 = InceptionA(in_channels=20)
self.mp = nn.MaxPool2d(2)
self.fc = nn.Linear(2200, 10) # 5 * 5 * 88
# self.cls = nn.Softmax(dim=1)
def forward(self, x):
x = F.relu(self.mp(self.conv1(x)))
x = self.incep1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.incep2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
# x = self.cls(x)
return x
if __name__ == "__main__":
myNet = GoogLeNet()
print(myNet)
train.py
from net_model import GoogLeNet
import time
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5))
])
train_set = CIFAR10(
root='./cifar-10',
train=True,
download=True,
transform=transform
)
train_loader = DataLoader(
train_set,
batch_size = 100,
shuffle = True
)
net = GoogLeNet().cuda()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
loss_func = nn.CrossEntropyLoss()
start_time = time.time()
epochs = 10
epoch_loss = []
for epoch in range(epochs):
running_loss = 0
for i, (inputs, labels) in enumerate(train_loader):
inputs = torch.tensor(inputs).type(torch.FloatTensor).cuda()
labels = torch.tensor(labels).type(torch.LongTensor).cuda()
out = net(inputs)
loss = loss_func(out, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
avr_loss = running_loss / (i+1)
epoch_loss.append(avr_loss)
print('epoch %d, loss: %.3f' % (epoch, avr_loss))
end_time = time.time()
print('Finished training, time used: %.3f' % (end_time - start_time))
plt.figure(figsize=(8, 5), dpi=150)
plt.plot(epoch_loss, c='r')
# plt.savefig('./document/figure/loss.pdf')
plt.show()
torch.save(net, 'net.pkl')
test.py
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import CIFAR10
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean = (0.5, 0.5, 0.5),
std = (0.5, 0.5, 0.5))
])
test_set = CIFAR10(
root='./cifar-10/',
train=False,
transform=transform
)
test_loader = DataLoader(
test_set,
batch_size = 100,
shuffle = True,
)
net = torch.load('net.pkl')
correct = 0
total = 0
for i, (inputs, labels) in enumerate(test_loader):
inputs = torch.tensor(inputs).type(torch.FloatTensor).cuda()
labels = torch.tensor(labels).type(torch.LongTensor).cuda()
out = net(inputs)
y_pred = out.argmax(dim=1)
correct += (y_pred == labels).sum().item()
total += labels.size()[0]
print('Accuracy on test set: %.4f' % (correct / total))
posted by 2inf

浙公网安备 33010602011771号