复分析1-基础
看方企勤的《复变函数教程》结合 stein 《Complex Analysis》随便做点笔记,打公式比较累,所以算是纲要。
参考课程主页
复分析1-基础
复数及复空间
\(z=x+iy=re^{i\theta}=r(\cos{\theta}+i\sin{\theta})\)
取\(-\pi\lt\theta_0\le\pi\)作为\(z\)的辐角主值, 则\(\arg z=\begin{cases}\arctan{\frac{y}{x}}&z\text{在1,4象限}\\\arctan{\frac{y}{x}}\pm\pi&z\text{在2,3象限}\end{cases}\)
\(\mathrm{Arg}z=\arg{z}+2k\pi\)
\(z^n=r^n(\cos{n\theta}+i\sin{n\theta})\)
\(w=\sqrt[n]{z}=r^{\frac{1}{n}}\left(\cos{\frac{\theta+2k\pi}{n}}+i\sin{\frac{\theta+2k\pi}{n}}\right)\)
\(z\overline{z}=|z|^2\)
\(\begin{cases}|z_1z_2|=|z_1||z_2|\\ \mathrm{Arg}(z_1z_2)=\mathrm{Arg}z_1+\mathrm{Arg}z_2\end{cases}\)
\(\begin{cases}|z_1/z_2|=|z_1|/|z_2|\\ \mathrm{Arg}\frac{z_1}{z_2}=\mathrm{Arg}z_1-\mathrm{Arg}z_2\end{cases}\)
定理1
定理2 设\(a_k,b_k(k=1,2,\cdots,n)\)为复数, 则
证明: 设\(t\)为任意复数, 则
累加得
令\(t=\sum\limits_{k=1}^na_kb_k/\sum\limits_{k=1}^n|b_k|^2\), 代入得
化简即证.
定理3 给定方程\(Az\overline{z}+\overline{B}z+B\overline{z}+C=0\), 其中\(A,C\in\mathbb{R}\), \(B\in\mathbb{C}\), 且\(|B|^2-AC\gt 0\), 则方程是一圆周方程, 即\(\left|z+\frac{B}{A}\right|=\frac{\sqrt{|B|^2-AC}}{|A|}\).
定理4 给定两点\(z_1,z_2\)和圆周\(Az\overline{z}+\overline{B}z+B\overline{z}+C=0\), 其系数满足\(|B|^2-AC\gt0\), 则\(z_1,z_2\)关于圆周对称的充分必要条件为\(Az_2\overline{z_1}+\overline{B}z_2+B\overline{z_1}+C=0\)
复平面的拓扑
开集与闭集
open disc \(D_r(z_0)\) of radius \(r\) centered at \(z_0\) : \(D_r(z_0)=\{z\in\mathbb{C}:|z-z_0|\lt r\}\), closed disc \(\overline{D_r}(z_0)\) of radius r centered at \(z_0\) is defined by \(\overline{D_r}(z_0)=\{z\in\mathbb{C}:|z-z_0|\le r\}\), boundary \(C_r(z_0)=\{z\in\mathbb{C}:|z-z_0|\le r\}\), unit disc \(D=\{z\in\mathbb{C}:|z|\lt1\}\).
The boundary of a set \(\Omega\) is equal to its closure minus its interior, and is often denoted by \(\partial\Omega\).
完备性
序列\(\{z_n\}\)收敛于\(w\in\mathbb{C}\), 有\(\lim\limits_{n\to\infty}|z_n-w|=0\), 记为\(w=\lim\limits_{n\to\infty}z_n\), 容易证明其充分必要条件为
\(\mathbb{C}\)中序列\(\{z_n\}\)称为\(Cauchy\)序列, 如果\(\forall\varepsilon\gt0,\exist\)正整数\(N\), 使得\(n,m\ge N\)时, 有\(|z_n-z_m|<\varepsilon\).
定理1 设\(\{z_n\}\)为\(\mathbb{C}\)中\(Cauchy\)序列, 则序列\(\{z_n\}\)收敛到\(w\), 或序列极限存在.
If \(\Omega\subset\mathbb{C}\) is bounded, we define its diameter by
Cantor定理 若\(\Omega\subset\mathbb{C}(n=1,2,\cdots)\)为闭集, 且\(\Omega_1\supset\Omega_2\supset\cdots\supset\Omega_n\supset\cdots, \operatorname{diam}(\Omega_n)\to0\quad as\ n\to \infty\), 则\(\bigcap\limits_{n=1}^{\infty}\Omega_n\)由一点组成.
紧性
\(\mathbb{C}\)或\(\overline{\mathbb{C}}\)中集合\(E\)称为紧集, 如果任一开集族\(\mathscr{G}\)覆盖\(E\), 即\(E\)中的每一点至少属于\(\mathscr{G}\)中某一开集, 则必能从\(\mathscr{G}\)中选出有穷个开集\(G_1,G_2,\cdots,G_n\)覆盖\(E\), 即\(E\subset\bigcup\limits_{j=1}^nG_j\).
Heine-Borel定理 若\(E\subset\mathbb{C}\)是有界闭集, 则\(E\)为\(\mathbb{C}\)中的闭集.
Bolzano-Weierstrass定理 任一无穷集至少有一极限点(或任一序列至少有一收敛子列, 子列可以收敛到\(\infty\))
曲线
连续曲线 定义为区间\([a,b]\)上的连续复值函数\(z(t)=x(t)+iy(t)\quad(a\le t\le b)\)
可求长曲线 给定曲线\(\gamma(t):a\le t\le b.\)对区间\([a,b]\)作分割
以\(z_j=z(t_j)(0\le j\le n)\)为顶点作折线\(P\), \(P\)的长度为
并对\([a,b]\)的任意分割\(\Delta\), 上式有界, 则称曲线\(z(t)\)为可求长曲线, 并称上确界
为曲线\(z(t)\)的长度.
We say that the parametrized curve is smooth if \(z'(t)\) exists and is continuous on \([a,b]\), and \(z'(t)\neq0\) for \(t\in[a,b]\).
We can define a curve \(\gamma^-\) obtained from the curve \(\gamma\) by reversing the orientation. As a particular parametrization for \(\gamma^-\) we can take \(z^-:[a,b]\to\mathbb{R}^2\) defined by
A smooth or piecewise-smooth curve is closed if \(z(a)=z(b)\) for any of its parametrizations. Finally, a smooth or piecewise-smooth curve is simple(Jordan curve) if it is not self-intersecting, that is, \(z(t)\neq z(s)\ unless\ s=t\).
引理 设\(f(t)\)为\([a,b]\)上的复值连续函数, 则
定理2 设\(z(t)(a\le t\le b)\)为光滑曲线, 则必为可求长曲线, 且长度为
连通性
定义 设\(E\)为\(\mathbb{C}\)(或\(\overline{\mathbb{C}}\))中集合, 称\(E\)为连通集, 如果不存在\(\mathbb{C}\)(或\(\overline{\mathbb{C}}\))中满足下列条件的开集\(G_1,G_2\):
(1) \(G_1\cap G_2=\varnothing;\)
(2) \(E\cap G_1\neq\varnothing, E\cap G_2\neq\varnothing;\)
(3) \(E\subset(G_1\cup G_2).\)
即不能用两个不相交非空集将其一分为二, 则称\(E\)为连通集.
定义 称连通开集为区域, 称区域的闭包为闭区域.
定理3 若\(D\)是开集, 则\(D\)的连通性与道路连通是等价的.
定义 \(D\)为区域, 若\(\overline{\mathbb{C}}\setminus D\)是连通集, 则称\(D\)为单连通区域.
Jordan定理 设\(\gamma\subset D\)为Jordan曲线, 它把\(\overline{\mathbb{C}}\)分成两个单连通区域, 其中一个是有界的, 称为\(\gamma\)的内部, 另一个是无界的, 称为\(\gamma\)的外部, \(\gamma\)是这两个单连通区域的共同边界.
定理4 设\(D\subset\mathbb{C}\)为区域, 则\(D\)为单连通区域的充分必要条件是: 对任一Jordan曲线\(\gamma\subset D\), \(\gamma\)的内部属于\(D\).
定义 集合\(E\)的最大连通子集称为\(E\)的一个分支.
定义 设\(D\)为区域, 若\(\overline{\mathbb{C}}\setminus D\)由\(n\)个连通分支组成, 则称\(D\)为n连通区域.
连续函数
如果\(f(z_1)=f(z_2)\)蕴含着\(z_1=z_2\), 即\(E\)中不同点的像也是\(F\)中的不同点, 则称映射\(f\)是一一的, 或单叶或双方单值的. 在这种情况下, \(w=f(z)\)有一个定义在\(f(E)\)上的反函数或逆映射, 记作\(z=f^{-1}(w)\).
解析函数
定义: 当\(z\in D\)趋于\(z_0\)时, 若极限
存在, 则称\(f(z)\)在点\(z=z_0\)可导, 极限值称为\(f(z)\)在\(z_0\)点的导数, 记作\(f'(z_0)\).
定义: 如果函数在\(z_0\)点的改变量可写成\(\Delta f=A(z_0)\Delta z+O(\Delta z)\), 则称\(f(z)\)在\(z=z_0\)点可微, 微分\(\mathbb{d}f(z_0)=A(z_0)\Delta z\).
若函数\(f(z)\)在域\(D\)内的每一点可导, 则称函数\(f(z)\)在域\(D\)内是解析的(analytic)或全纯的(holomorphic). 函数\(f(z)\)在\(z_0\)邻域内解析, 则称\(f(z)\)在\(z_0\)点解析.
we fix \(y_0\) and think of \(f\) as a complex-valued fuction of the single real variable \(x\).
Now taking h purely imaginary, say \(h=ih_2\), a similar argument yields
Therefore, if \(f\) is holomorphic we have shown that
Writing \(f=u+iv\)
定理1 设函数\(f(z)=u(z)+iv(z)\)定义在区域\(D\)内, 则\(f(z)\)在\(z_0\in D\)点可微的充要条件为: \(u(z),v(z)\)在\(z_0\)点可微, 且在该点偏导数满足Cauchy-Riemann方程(简称\(C-R\)方程):
we can clarify the situation further by defining two differential operators
指数函数
设\(z=x+iy\),指数函数\(e^z\)定义为:
易证如下性质
(1) \(e^z\gt0,|e^z|=e^x\gt0\)
(2) \(e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}\)
(3) \(e^z\)是以\(2\pi i\)为周期的周期函数
(4) \(e^z\)在\(\mathbb{C}\)上解析, 且\((e^z)'=e^z\)
儒可夫斯基函数
称函数
为儒可夫斯基函数
分式线性变换
称函数
为分式线性变换, 也称为Mobius变换
三角函数
定义正弦函数和余弦函数
则
具有如下性质
(1) \(\sin{z},\cos{z}\)在\(\mathbb{C}\)上解析, 且\((\sin{z})'=\cos{z},\quad(\cos{z})'=-\sin{z}\)
(2) \(\sin{z},\cos{z}\)以\(2\pi\)为周期, \(\sin{z}\)为奇函数, \(\cos{z}\)为偶函数
(3) 和角公式基本关系成立
(4) \(|\sin{z}|\)和\(|\cos{z}|\)在\(\mathbb{C}\)上无界

浙公网安备 33010602011771号