89. 格雷编码
格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。
给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。
示例 1:
输入: 2
输出: [0,1,3,2]
解释: 00 - 0
01 - 1
11 - 3
10 - 2
对于给定的 n,其格雷编码序列并不唯一。
例如,[0,2,3,1] 也是一个有效的格雷编码序列。
00 - 0
10 - 2
11 - 3
01 - 1
示例 2:
输入: 0
输出: [0]
解释: 我们定义格雷编码序列必须以 0 开头。
给定编码总位数为 n 的格雷编码序列,其长度为 2^n 。当 n = 0 时,长度为 2^0 = 1。
因此,当 n = 0 时,其格雷编码序列为 [0]。
思路:关键是要找到规律
n = 0, [0]
n = 1, [0,1] //新的元素1,为0+2^0
n = 2, [0,1,3,2] // 新的元素[3,2]为[0,1]->[1,0]后分别加上2^1
n = 3, [0,1,3,2,6,7,5,4] // 新的元素[6,7,5,4]为[0,1,3,2]->[2,3,1,0]后分别加上2^2->[6,7,5,4]
c++代码
class Solution {
public:
vector<int> grayCode(int n) {
vector<int> result = {0};
for (int i = 1; i <= n; ++i) {
int mask = 1 << (i-1);
for (int j = result.size()-1; j >= 0; --j) {
result.push_back(result[j] + mask);
}
}
return result;
}
};
发现一种新方法
i^(i>>1),自己与自己右移一位进行异或,得到的就是第 i 个格雷码。
class Solution {
public:
vector<int> grayCode(int n) {
int size = 1 << n, graycode = 0;
vector<int> res;
for(int i=0;i<size;i++){
graycode = i ^ (i>>1);
res.push_back(graycode);
}
return res;
}
};
浙公网安备 33010602011771号