LeetCode 63. Unique Paths II Java
题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
题意:给出一个二维格子,其中值为1的点表示障碍点,要求求出从最左上角的点到最右下角的点有多少种走法。使用动态规划,对于其中一个点obstacleGrid[i][j](1<i<m,i<j<n),到该点的走法为d(obstacleGrid[i][j])=d(obstacleGrid[i-1][j])+d(obstacleGrid[i][j-1]),对于第一行和第一列,如果该点前面有障碍点,那么到到此点有0中方法,反之为1。遍历数组即可求解。
代码:
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int row = obstacleGrid.length;
if(row ==0) return 0;
int col = obstacleGrid[0].length;
int[][] res = new int[row][col];
for(int i=0;i<row;i++){
for(int j=0;j<col;j++){
if(obstacleGrid[i][j]==1) {
res[i][j] = 0;
continue;
}
if(i==0 || j==0){
if(j!=0){
res[i][j] = res[i][j-1];
}else if(i!=0){
res[i][j] = res[i-1][j];
}else{
res[i][j] = 1;
}
}else{
res[i][j] = res[i-1][j] + res[i][j-1];
}
}
}
return res[row-1][col-1];
}
}

浙公网安备 33010602011771号