13垃圾邮件分类2

1.读取

2.数据预处理

import csv

import nltk

import re

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

import pandas as pd

 

#返回类别

def getLb(data):

    if data.startswith("J"):

        return nltk.corpus.wordnet.ADJ

    elif data.startswith("V"):

        return nltk.corpus.wordnet.VERB

    elif data.startswith("N"):

        return nltk.corpus.wordnet.NOUN

    elif data.startswith("R"):

        return nltk.corpus.wordnet.ADV

    else:

        return "";

 

def preprocessing(data):

    newdata=[]

    punctuation = '!,;:?"\''

    data=re.sub(r'[{}]+'.format(punctuation), '', data).strip().lower();#去标点和转小写

    for i in nltk.sent_tokenize(data, "english"):  # 对文本按照句子进行分割

        for j in nltk.word_tokenize(i):  # 对句子进行分词

            newdata.append(j)

    stops = stopwords.words('english')

    newdata= [i for i in newdata if i not in stops]#去停用词

    newdata = nltk.pos_tag(newdata)#词性标注

    lem = WordNetLemmatizer()

    for i, j in enumerate(newdata):#还原词

        y = getLb(j[1])

        if y:

            newdata[i] = lem.lemmatize(j[0], y)

        else:

            newdata[i] = j[0]

    return newdata

3.数据划分训练集和测试集数据划分

from sklearn.model_selection import train_test_split

x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

4.文本特征提取

sklearn.feature_extraction.text.CountVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

sklearn.feature_extraction.text.TfidfVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf2 = TfidfVectorizer()

观察邮件与向量的关系

向量还原为邮件

 

# 4 文本特征选取即向量化,一个单词一种特征

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf2 = TfidfVectorizer()  # 把原始文本转成特征矩阵

X_train = tfidf2.fit_transform(x_train)

X_test = tfidf2.transform(x_test)

print(X_train)

print("X_train.toarray()数组向量",X_train.toarray())

print("X_train.toarray()",X_train.toarray().shape)

print("X_test.toarray()",X_test.toarray().shape)

 

# 统计所有的词

email_txt = []

for email in email_data:

    email_txt.extend(email.split())

print("总共有的单词数:",len(email_txt))

print("不重复的单词数:",len(set(email_txt)))

print("生成词袋:",tfidf2.vocabulary_)   # fit生成词袋

 

#  向量还原成邮件

print("X_train.toarray()[0]:",X_train.toarray()[0])

import numpy as np

a = np.flatnonzero(X_train.toarray()[0])  # (中为邮件0的向量) 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)即下标

print("查看返回非零的个数:",a)

print(X_train.toarray()[0][a])

# 非零元素对应的单词

b = tfidf2.vocabulary_  # 词汇表

key_list = []

for key,value in b.items():

    if value in a:

        key_list.append(key)

print("非零中查看有用的词",key_list)

print("x_train[0]",x_train[0])

 

4.模型选择

from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

说明为什么选择这个模型?

5.模型评价:混淆矩阵,分类报告

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_predict)

说明混淆矩阵的含义

from sklearn.metrics import classification_report

说明准确率、精确率、召回率、F值分别代表的意义

6.比较与总结

如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

训练数据少时,用CountVectorizer进行文本特征生成更精确

 

posted @ 2020-06-10 10:11  广宇小陈  阅读(78)  评论(0)    收藏  举报